帳號:guest(18.218.190.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳宗樺
作者(外文):Wu, Tzong-Huah
論文名稱(中文):探索TDP-43對DNA/RNA的結合特性及其可能作為RNA伴護蛋白之活性
論文名稱(外文):Explore the DNA/RNA binding properties of TDP-43 and its potential RNA chaperone activity
指導教授(中文):黃人則
楊立威
指導教授(外文):Huang, Joseph Jen-Tse
Yang, Lee-Wei
口試委員(中文):袁小琀
陳韻如
李以仁
口試委員(外文):Yuan, Hanna
Chen, Yun-Ru Ruby
Lee, I-Ren
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080850
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:134
中文關鍵詞:蛋白質-核酸交互作用RNA伴護蛋白解旋G-四聯體螢光非等向性分子動態電腦模擬螢光電泳移動位切實驗
外文關鍵詞:protein-DNA/RNA interactionTDP-43RNA chaperoneunwindingG-quadruplexFluorescence AnisotropyMD simulationsF-EMSA stoichiometry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
專一性的蛋白質-DNA/RNA結合在基因調控中扮演著關鍵的角色。在胚胎發育中,TDP-43是個必要的保守DNA/RNA結合蛋白。在2014年,Saldi等人以生物資訊及實驗發現並證實TDP-43是 一個RNA伴護蛋白並具有解開雙股螺旋的RNA轉譯產物之能力。因此,我們嘗試著去切分TDP-43的區域功能並利用螢光非等向性(Fluorescence Anisotropy)、螢光電泳移動位切試驗(F-EMSA)、分子動態電腦模擬(MD simulations)以及螢光恢復試驗(Fluorescence Recovery Assay)等來量測與驗證其與DNA/RNA的結合特性,如結合常數(Kd)、希爾方程(hill coefficient)、結合當量及解旋活性。TDP-43的RNA結合相關區域(包含著RRM1及RRM2及RRM1加成RRM2的RBD區域)其對應於DNA/RNA的結合常數顯示TDP-43偏好與RNA結合更甚於與DNA結合,而分子動態電腦模擬也呼應這一點結論。TDP-43與(TG)6的結合當量結果也印證其結合時協同作用的可能性。在量測TDP-43的結合當量的過程中,我們發現了螢光電泳移動位切試驗在分析方法上可能的偏差,因為蛋白質與核酸的結合過程中可能會影響到螢光標定物的量子產率(Quantum Yield),而此現象已被歸類為蛋白誘導螢光增強(PIFE)現象。透過分析電泳膠體上非結合的螢光標定核酸區塊,我們得到相似且更好的分析結果對比於傳統的蛋白結合區塊分析方法。此外,分子動態電腦模擬的結果亦符合相對應的實驗結論,其能量的計算以及生物資訊學上保守分數的計算顯示出RRM1對應RRM2中相同或相異的殘基提供了一些演化學上的可能觀點。從實驗結果得知RRM1對比於RRM2有較高的(TG)6核酸結能力同時透過專一的結合能力RRM1具有較強的雙股解旋能力。另外,透過分子電腦模擬的結果分析揭示TDP-43是藉由與鳥苷(Guanosine,一個於RNA折疊的關鍵核苷酸)的結合達成與(TG)6專一性的結合。沿此線索,我們亦發現TDP-43的RRM1可能具有解開形成人類端粒DNA結構:G-四聯體(G-quadruplex)的能力,而相關的研究仍繼續進行中。
Sequence specific protein-DNA/RNA recognition plays a key role in genetic regulations. A conserved DNA/RNA binding protein, TDP-43, is essentially involved in embryonic development and neurodegenerative disease formation. In 2014, Saldi et al. discovered that TDP-43 possesses RNA chaperone activity and has the ability to resolve the double stranded structure of RNA transcripts. Therefore, we try to understand the DNA/RNA binding properties and RNA chaperone activities of TDP-43 by dissecting it into domain functions through determining constant (Kd), hill coefficient (nH), stoichiometry, and unwinding activity by fluorescence anisotropy (FA), fluorescence based electrophoretic mobility shift assay (F-EMSA), fluorescence recovery assay, and molecular dynamic (MD) simulations. The Kd of TDP-43’s RNA binding domains (RBD, which is composed of RRM1 and RRM2) demonstrates the binding preference of RNA to DNA. The stoichiometry confirms the cooperative binding mode of RRM1 and RBD to ss(TG)6. During determining the stoichiometry of protein-nucleic acids interactions by quantifying the fluorescence intensity in F-EMSA, we have found a potential bias of bound fraction analysis since the protein induced fluorescence enhancement (PIFE) phenomenon could influence the quantum yield of the fluorophore on nucleic acids. Through analyzing the free-fraction nucleic acids in F-EMSA, we get similar and better result of bound-fraction analysis. Furthermore, our MD simulations also agree with the binding properties and stoichiometry of RNA binding domains. The energy calculation of MD simulations and conservation scores of RRM1 and RRM2 reveal the similar and different binding sites of RRM1 versus RRM2 in evolutionary point of view. RRM1 possessing higher binding affinity and conservation than RRM2 can facilitate the unwinding of double stranded DNA through specific interaction with its target, ss(TG)6. In addition, the analysis of MD simulations upon nucleic acids illustrates the important interaction of Guanosine – a key player in RNA folding/misfolding mechanism. To follow the clue, we discover a human telomeric G-quadruplex can also be resolved by the RRM1 domain of TDP-43, and the related project is on going.
Abstract (6)
摘要 (8)
Acknowledgement (9)
Chapter 1: Introduction (10)
1.1: The importance of TDP-43 (11)
1.2: The domain function of TDP-43 (11)
1.2.1: The N-terminus of TDP-43 promotes TDP-43 oligomerization (12)
1.2.2: The biophysical properties of TDP-43 RRM1 and RRM2 (12)
1.2.3: The functional role of TDP-43 C-terminus (13)
1.3: The importance of RNA chaperone activity and TDP-43 (13)
1.4: Neurodegenerative diseases and telomere shortening (14)
1.4.1: The structure and function of human telomere (14)
1.4.2: The regulatory role of Guanine-rich sequence, G-quadruplex (15)
1.4.3: TDP-43 is a G-quadruplex binding protein involved in cellular transportation (15)
1.5: Specific Aims (16)
Chapter 2: Material and Methods (18)
2.1: Protein purification (19)
2.2: Quantification of nucleic acid oligos (20)
2.3: Fluorescence based electrophoretic mobility shift assay (F-EMSA) (21)
2.4: Image analysis for protein-ssDNA stoichiometry determination (21)
2.5: Fluorescence anisotropy assay for binding constant and hill coefficient measurement (22)
2.6: F-EMSA for dsDNA/dsRNA unwinding (23)
2.7: Fluorescence recovery for time-course unwinding assay (23)
2.8: MD simulations (24)
2.8.1: Preparation of the initial 3D structures (24)
2.8.2: Creation of input files for MD Simulations (25)
2.8.3: Energy minimization (25)
2.8.4: Equilibration and production run (25)
2.8.5: Binding Gibbs free energy change calculations using MM/PBSA (26)
2.8.6: ABMD Simulations Method (26)
2.8.7: Protein-nucleotide docking (27)
2.8.8: Conservation score (28)
2.9: Steady-state Förster resonance energy transfer measurement (28)
2.10: Relative mobility (RM) analysis (28)
2.11: Quantum Yield determination (29)
Chapter 3: Results (30)
3.1: The binding properties of RRM1, RRM2, and RBD to TG/rUrG repeats measured by fluorescence anisotropy (31)
3.2: The stoichiometry of RRM1 and RBD binding to ss(TG)6 determined by F-EMSA (32)
3.3 The protein-nucleic acids binding affinity comparison of experiments to MD simulations (33)
3.4 The difference of binding energy between RRM1-(rUrG)6 and RRM2-(rUrG)6 (34)
3.5 The binding-energy difference between RRM1-ss(TG)6 and RRM2-ss(TG)6 (36)
3.6: RRM domains prefer Guanine rather than Thymine upon binding to either ss(TG)6 or (rUrG)6 (38)
3.7: RRM1 domain unwinds double-stranded structure of TG-repeat sequence (39)
3.7.1: F-EMSA for unwinding ability of RRM1, RRM2, and RBD. (39)
3.7.2: Fluorescence Recovery Assay for time-course measuring of unwinding process. (40)
3.8: Adaptively Biased MD (ABMD) simulations reveal that RRM1 can better facilitates the opening of ds(TG)6 than RRM2 (41)
3.9: RRM1 can resolve intermolecular anti-parallel and parallel G-quadruplexes (41)
Chapter 4: Discussion (44)
4.1: The importance of unwinding activities of RRM1 in TDP-43 (45)
4.2: The importance of Guanine binding by RRM1 domain (46)
4.3: Multiple RRM1s and RBDs binding to (rUrG)6 may trigger oligomerization of TDP-43. (46)
4.4: The potential role of resolving G-quadruplexes by TDP-43 RRM1 (48)
4.5: F-EMSA for biochemical assays of protein-nucleic acids interactions (48)
Tables (51)
Figures (71)
Chapter 5: References (107)
Chapter 6: Appendix (118)

Afroz, T., et al. "Functional and Dynamic Polymerization of the Als-Linked Protein Tdp-43 Antagonizes Its Pathologic Aggregation." Nat Commun 8.1 (2017): 45.
Alami, N. H., et al. "Axonal Transport of Tdp-43 Mrna Granules Is Impaired by Als-Causing Mutations." Neuron 81.3 (2014): 536-43.
Anderson, B. J., et al. "Using Fluorophore-Labeled Oligonucleotides to Measure Affinities of Protein-DNA Interactions." Methods Enzymol 450 (2008): 253-72.
Aoyagi, S., et al. "Reagentless and Regenerable Immunosensor for Monitoring of Immunoglobulin G Based on Non-Separation Immunoassay." Biosens Bioelectron 18.5-6 (2003): 791-5.
Ash, P. E., et al. "Neurotoxic Effects of Tdp-43 Overexpression in C. Elegans." Hum Mol Genet 19.16 (2010): 3206-18.
Ashkenazy, H., et al. "Consurf 2016: An Improved Methodology to Estimate and Visualize Evolutionary Conservation in Macromolecules." Nucleic Acids Res 44.W1 (2016): W344-50.
Ashkenazy, H., et al. "Consurf 2010: Calculating Evolutionary Conservation in Sequence and Structure of Proteins and Nucleic Acids." Nucleic Acids Res 38.Web Server issue (2010): W529-33.
Aulas, A., and C. Vande Velde. "Alterations in Stress Granule Dynamics Driven by Tdp-43 and Fus: A Link to Pathological Inclusions in Als?" Front Cell Neurosci 9 (2015): 423.
Avendano-Vazquez, S. E., et al. "Autoregulation of Tdp-43 Mrna Levels Involves Interplay between Transcription, Splicing, and Alternative Polya Site Selection." Genes Dev 26.15 (2012): 1679-84.
Ayala, Y. M., et al. "Tdp-43 Regulates Its Mrna Levels through a Negative Feedback Loop." EMBO J 30.2 (2011): 277-88.
Ayala, Y. M., et al. "Human, Drosophila, and C.Elegans Tdp43: Nucleic Acid Binding Properties and Splicing Regulatory Function." J Mol Biol 348.3 (2005): 575-88.
Babin, V., C. Roland, and C. Sagui. "Adaptively Biased Molecular Dynamics for Free Energy Calculations." J Chem Phys 128.13 (2008): 134101.
Bedrat, A., L. Lacroix, and J. L. Mergny. "Re-Evaluation of G-Quadruplex Propensity with G4hunter." Nucleic Acids Res 44.4 (2016): 1746-59.
Berman, H. M., et al. "The Protein Data Bank." Nucleic Acids Res 28.1 (2000): 235-42.
BIOVIA, Dassault Systèmes. Discovery Studio Modeling Environment. Vers. 2016.
Buratti, E., and F. E. Baralle. "Characterization and Functional Implications of the Rna Binding Properties of Nuclear Factor Tdp-43, a Novel Splicing Regulator of Cftr Exon 9." J Biol Chem 276.39 (2001): 36337-43.
Buratti, E., et al. "Nuclear Factor Tdp-43 and Sr Proteins Promote in Vitro and in Vivo Cftr Exon 9 Skipping." EMBO J 20.7 (2001): 1774-84.
Busch, A., and K. J. Hertel. "Evolution of Sr Protein and Hnrnp Splicing Regulatory Factors." Wiley Interdiscip Rev RNA 3.1 (2012): 1-12.
Casafont, I., et al. "Tdp-43 Localizes in Mrna Transcription and Processing Sites in Mammalian Neurons." J Struct Biol 167.3 (2009): 235-41.
Cavaluzzi, M. J., and P. N. Borer. "Revised Uv Extinction Coefficients for Nucleoside-5'-Monophosphates and Unpaired DNA and Rna." Nucleic Acids Res 32.1 (2004): e13.
Celniker, G., et al. "Consurf: Using Evolutionary Data to Raise Testable Hypotheses About Protein Function." Israel Journal of Chemistry 53.3-4 (2013): 199-206.
Chambers, V. S., et al. "High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome." Nat Biotechnol 33.8 (2015): 877-81.
Chang, C. K., et al. "Molecular Mechanism of Oxidation-Induced Tdp-43 Rrm1 Aggregation and Loss of Function." FEBS Lett 587.6 (2013): 575-82.
Chang, C. K., et al. "The N-Terminus of Tdp-43 Promotes Its Oligomerization and Enhances DNA Binding Affinity." Biochem Biophys Res Commun 425.2 (2012): 219-24.
Chen, A. K., et al. "Induction of Amyloid Fibrils by the C-Terminal Fragments of Tdp-43 in Amyotrophic Lateral Sclerosis." J Am Chem Soc 132.4 (2010): 1186-7.
Cogoi, S., et al. "The Kras Promoter Responds to Myc-Associated Zinc Finger and Poly(Adp-Ribose) Polymerase 1 Proteins, Which Recognize a Critical Quadruplex-Forming Ga-Element." J Biol Chem 285.29 (2010): 22003-16.
Cogoi, S., and L. E. Xodo. "G-Quadruplex Formation within the Promoter of the Kras Proto-Oncogene and Its Effect on Transcription." Nucleic Acids Res 34.9 (2006): 2536-49.
D'Ambrogio, A., et al. "Functional Mapping of the Interaction between Tdp-43 and Hnrnp A2 in Vivo." Nucleic Acids Res 37.12 (2009): 4116-26.
D.A. Case, J.T. Berryman, R.M. Betz, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, T. Luchko, R. Luo, B. Madej, K.M. Merz, G. Monard, P. Needham, H. Nguyen, H.T. Nguyen, I. Omelyan, A. Onufriev, D.R. Roe, A. Roitberg, R. Salomon-Ferrer, C.L. Simmerling, W. Smith, J. Swails, R.C. Walker, J. Wang, R.M. Wolf, X. Wu, D.M. York and P.A. Kollman. "Amber 2015." (2015).
Dao, N. T., et al. "Following G-Quadruplex Formation by Its Intrinsic Fluorescence." FEBS Lett 585.24 (2011): 3969-77.
De Nicola, B., et al. "Structure and Possible Function of a G-Quadruplex in the Long Terminal Repeat of the Proviral Hiv-1 Genome." Nucleic Acids Res 44.13 (2016): 6442-51.
Deering, Raquel Payzant. "The Als-Linked Gene Tdp-43 Regulates Ifnβ Expression through a Novel Mechanism of 3' Utr-Mediated Promoter Cis-Regulation." Doctoral dissertation. Harvard University., 2012.
Ding, J., et al. "Crystal Structure of the Two-Rrm Domain of Hnrnp A1 (Up1) Complexed with Single-Stranded Telomeric DNA." Genes Dev 13.9 (1999): 1102-15.
Dominguez, C., et al. "Structural Basis of G-Tract Recognition and Encaging by Hnrnp F Quasi-Rrms." Nat Struct Mol Biol 17.7 (2010): 853-61.
Du, Z., et al. "Enrichment of G4 DNA Motif in Transcriptional Regulatory Region of Chicken Genome." Biochem Biophys Res Commun 354.4 (2007): 1067-70.
Eitan, E., E. R. Hutchison, and M. P. Mattson. "Telomere Shortening in Neurological Disorders: An Abundance of Unanswered Questions." Trends Neurosci 37.5 (2014): 256-63.
Filipovska, A., and O. Rackham. "Modular Recognition of Nucleic Acids by Puf, Tale and Ppr Proteins." Mol Biosyst 8.3 (2012): 699-708.
Freibaum, B. D., et al. "Global Analysis of Tdp-43 Interacting Proteins Reveals Strong Association with Rna Splicing and Translation Machinery." J Proteome Res 9.2 (2010): 1104-20.
Gabb, H. A., R. M. Jackson, and M. J. Sternberg. "Modelling Protein Docking Using Shape Complementarity, Electrostatics and Biochemical Information." J Mol Biol 272.1 (1997): 106-20.
Gamsjaeger, R., et al. "The Structural Basis of DNA Binding by the Single-Stranded DNA-Binding Protein from Sulfolobus Solfataricus." Biochem J 465.2 (2015): 337-46.
Gantier, M. P., and B. R. Williams. "The Response of Mammalian Cells to Double-Stranded Rna." Cytokine Growth Factor Rev 18.5-6 (2007): 363-71.
Grabowski, P. J. "A Molecular Code for Splicing Silencing: Configurations of Guanosine-Rich Motifs." Biochem Soc Trans 32.Pt 6 (2004): 924-7.
Grohman, J. K., et al. "A Guanosine-Centric Mechanism for Rna Chaperone Function." Science 340.6129 (2013): 190-5.
Gu, J., et al. "Transactive Response DNA-Binding Protein 43 (Tdp-43) Regulates Alternative Splicing of Tau Exon 10: Implications for the Pathogenesis of Tauopathies." J Biol Chem 292.25 (2017): 10600-12.
Guerrero, E. N., et al. "Tdp-43/Fus in Motor Neuron Disease: Complexity and Challenges." Prog Neurobiol 145-146 (2016): 78-97.
Han, A., et al. "De Novo Prediction of Ptbp1 Binding and Splicing Targets Reveals Unexpected Features of Its Rna Recognition and Function." PLoS Comput Biol 10.1 (2014): e1003442.
Hansel-Hertsch, R., M. Di Antonio, and S. Balasubramanian. "DNA G-Quadruplexes in the Human Genome: Detection, Functions and Therapeutic Potential." Nat Rev Mol Cell Biol 18.5 (2017): 279-84.
Harrach, M. F., and B. Drossel. "Structure and Dynamics of Tip3p, Tip4p, and Tip5p Water near Smooth and Atomistic Walls of Different Hydroaffinity." J Chem Phys 140.17 (2014): 174501.
Hellman, L. M., and M. G. Fried. "Electrophoretic Mobility Shift Assay (Emsa) for Detecting Protein-Nucleic Acid Interactions." Nat Protoc 2.8 (2007): 1849-61.
Ho, Yuan-Ta. "Atp-Independent Dsdna Helicases Could Be Evolved from Potent Rna-Recognition Motifs Leveraging a Guanine-Binding Specificity." National Tsing Hua University, Taiwan, 2018.
Hudson, W. H., and E. A. Ortlund. "The Structure, Function and Evolution of Proteins That Bind DNA and Rna." Nat Rev Mol Cell Biol 15.11 (2014): 749-60.
Hwang, H., and S. Myong. "Protein Induced Fluorescence Enhancement (Pife) for Probing Protein-Nucleic Acid Interactions." Chem Soc Rev 43.4 (2014): 1221-9.
Ihara, R., et al. "Rna Binding Mediates Neurotoxicity in the Transgenic Drosophila Model of Tdp-43 Proteinopathy." Hum Mol Genet 22.22 (2013): 4474-84.
Ishiguro, A., et al. "Tdp-43 Binds and Transports G-Quadruplex-Containing Mrnas into Neurites for Local Translation." Genes Cells 21.5 (2016): 466-81.
Janssens, J., et al. "Overexpression of Als-Associated P.M337v Human Tdp-43 in Mice Worsens Disease Features Compared to Wild-Type Human Tdp-43 Mice." Mol Neurobiol 48.1 (2013): 22-35.
Joint Proteomic, S. Laboratory of the Ludwig Institute for Cancer Research, Walter, and Melbourne Australia Eliza Hall Institute of Medical Research. "Measuring Protein Concentration in the Presence of Nucleic Acids by A280/A260: The Method of Warburg and Christian." CSH Protoc 2006.1 (2006).
Joosten, R. P., et al. "A Series of Pdb Related Databases for Everyday Needs." Nucleic Acids Res 39.Database issue (2011): D411-9.
Jullien, N., and J. P. Herman. "Luego: A Cost and Time Saving Gel Shift Procedure." Biotechniques 51.4 (2011): 267-9.
Kabsch, W., and C. Sander. "Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features." Biopolymers 22.12 (1983): 2577-637.
Kaguni, L. S., and D. A. Clayton. "Template-Directed Pausing in in Vitro DNA Synthesis by DNA Polymerase a from Drosophila Melanogaster Embryos." Proc Natl Acad Sci U S A 79.4 (1982): 983-7.
Kaji, T., et al. "Nanosecond to Submillisecond Dynamics in Dye-Labeled Single-Stranded DNA, as Revealed by Ensemble Measurements and Photon Statistics at Single-Molecule Level." J Phys Chem B 113.42 (2009): 13917-25.
Kamath-Loeb, A. S., et al. "Interactions between the Werner Syndrome Helicase and DNA Polymerase Delta Specifically Facilitate Copying of Tetraplex and Hairpin Structures of the D(Cgg)N Trinucleotide Repeat Sequence." J Biol Chem 276.19 (2001): 16439-46.
Kardos, József. "Protein-Ligand Interactions." Introduction to Practical Biochemistry. http://elte.prompt.hu/sites/default/files/tananyagok/IntroductionToPracticalBiochemistry/ch08.html: Eötvös Loránd University, 2013.
Kendrick, S., et al. "Simultaneous Drug Targeting of the Promoter Myc G-Quadruplex and Bcl2 I-Motif in Diffuse Large B-Cell Lymphoma Delays Tumor Growth." J Med Chem 60.15 (2017): 6587-97.
Kerkour, A., et al. "High-Resolution Three-Dimensional Nmr Structure of the Kras Proto-Oncogene Promoter Reveals Key Features of a G-Quadruplex Involved in Transcriptional Regulation." J Biol Chem 292.19 (2017): 8082-91.
Kishor, Aparna, Gary Brewer, and Gerald M. Wilson. "Analyses of Rna–Ligand Interactions by Fluorescence Anisotropy." Biophysical Approaches to Translational Control of Gene Expression. Ed. Dinman, Jonathan D. New York, NY: Springer New York, 2012. 173-98.
Kraemer, B. C., et al. "Loss of Murine Tdp-43 Disrupts Motor Function and Plays an Essential Role in Embryogenesis." Acta Neuropathol 119.4 (2010): 409-19.
Kuo, P. H., et al. "The Crystal Structure of Tdp-43 Rrm1-DNA Complex Reveals the Specific Recognition for Ug- and Tg-Rich Nucleic Acids." Nucleic Acids Res 42.7 (2014): 4712-22.
Kuo, P. H., et al. "Structural Insights into Tdp-43 in Nucleic-Acid Binding and Domain Interactions." Nucleic Acids Res 37.6 (2009): 1799-808.
Lagier-Tourenne, C., and D. W. Cleveland. "Rethinking Als: The Fus About Tdp-43." Cell 136.6 (2009): 1001-4.
Lagier-Tourenne, C., M. Polymenidou, and D. W. Cleveland. "Tdp-43 and Fus/Tls: Emerging Roles in Rna Processing and Neurodegeneration." Hum Mol Genet 19.R1 (2010): R46-64.
Li, H., et al. "Molecular Binding Sites Are Located near the Interface of Intrinsic Dynamics Domains (Idds)." J Chem Inf Model 54.8 (2014): 2275-85.
Li, Y., et al. "A Drosophila Model for Tdp-43 Proteinopathy." Proc Natl Acad Sci U S A 107.7 (2010): 3169-74.
Ling, J. P., et al. "Tdp-43 Repression of Nonconserved Cryptic Exons Is Compromised in Als-Ftd." Science 349.6248 (2015): 650-5.
Ling, S. C., M. Polymenidou, and D. W. Cleveland. "Converging Mechanisms in Als and Ftd: Disrupted Rna and Protein Homeostasis." Neuron 79.3 (2013): 416-38.
Lopes, J., et al. "G-Quadruplex-Induced Instability During Leading-Strand Replication." EMBO J 30.19 (2011): 4033-46.
Lorsch, J. R. "Rna Chaperones Exist and Dead Box Proteins Get a Life." Cell 109.7 (2002): 797-800.
Lourenco, G. F., et al. "Long Noncoding Rnas in Tdp-43 and Fus/Tls-Related Frontotemporal Lobar Degeneration (Ftld)." Neurobiol Dis 82 (2015): 445-54.
Lukavsky, P. J., et al. "Molecular Basis of Ug-Rich Rna Recognition by the Human Splicing Factor Tdp-43." Nat Struct Mol Biol 20.12 (2013): 1443-9.
Mackness, B. C., et al. "Folding of the Rna Recognition Motif (Rrm) Domains of the Amyotrophic Lateral Sclerosis (Als)-Linked Protein Tdp-43 Reveals an Intermediate State." J Biol Chem 289.12 (2014): 8264-76.
Madireddy, A., et al. "G-Quadruplex-Interacting Compounds Alter Latent DNA Replication and Episomal Persistence of Kshv." Nucleic Acids Res 44.8 (2016): 3675-94.
Maier, J. A., et al. "Ff14sb: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99sb." J Chem Theory Comput 11.8 (2015): 3696-713.
Majde, J. A. "Viral Double-Stranded Rna, Cytokines, and the Flu." J Interferon Cytokine Res 20.3 (2000): 259-72.
Maris, C., C. Dominguez, and F. H. Allain. "The Rna Recognition Motif, a Plastic Rna-Binding Platform to Regulate Post-Transcriptional Gene Expression." FEBS J 272.9 (2005): 2118-31.
McNamara, P., W. Lew, and L. Han. "Fluorescent Imaging and Analysis with Typhoon 8600." Electrophoresis 22.5 (2001): 837-42.
Mendoza, O., et al. "G-Quadruplexes and Helicases." Nucleic Acids Res 44.5 (2016): 1989-2006.
Miller, B. R., 3rd, et al. "Mmpbsa.Py: An Efficient Program for End-State Free Energy Calculations." J Chem Theory Comput 8.9 (2012): 3314-21.
Mompean, M., et al. "The Tdp-43 N-Terminal Domain Structure at High Resolution." FEBS J 283.7 (2016): 1242-60.
Morten, M. J., et al. "Binding Dynamics of a Monomeric Ssb Protein to DNA: A Single-Molecule Multi-Process Approach." Nucleic Acids Res 43.22 (2015): 10907-24.
Neumann, M., et al. "Ubiquitinated Tdp-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis." Science 314.5796 (2006): 130-3.
Nishida, K., et al. "Rna Binding Proteins and Genome Integrity." Int J Mol Sci 18.7 (2017).
Pagano, J. M., C. C. Clingman, and S. P. Ryder. "Quantitative Approaches to Monitor Protein-Nucleic Acid Interactions Using Fluorescent Probes." RNA 17.1 (2011): 14-20.
Pesiridis, G. S., V. M. Lee, and J. Q. Trojanowski. "Mutations in Tdp-43 Link Glycine-Rich Domain Functions to Amyotrophic Lateral Sclerosis." Hum Mol Genet 18.R2 (2009): R156-62.
Phan, A. T., and J. L. Mergny. "Human Telomeric DNA: G-Quadruplex, I-Motif and Watson-Crick Double Helix." Nucleic Acids Res 30.21 (2002): 4618-25.
Piekna-Przybylska, D., et al. "U3 Region in the Hiv-1 Genome Adopts a G-Quadruplex Structure in Its Rna and DNA Sequence." Biochemistry 53.16 (2014): 2581-93.
Polymenidou, M., et al. "Long Pre-Mrna Depletion and Rna Missplicing Contribute to Neuronal Vulnerability from Loss of Tdp-43." Nat Neurosci 14.4 (2011): 459-68.
Preus, Søren. "A|E - Uv-Vis-Ir Spectral Software 2.2, Fluortools, Www.Fluortools.Com." (2015). Web.
Qin, H., et al. "Tdp-43 N Terminus Encodes a Novel Ubiquitin-Like Fold and Its Unfolded Form in Equilibrium That Can Be Shifted by Binding to Ssdna." Proc Natl Acad Sci U S A 111.52 (2014): 18619-24.
Rajkowitsch, L., et al. "Rna Chaperones, Rna Annealers and Rna Helicases." RNA Biol 4.3 (2007): 118-30.
Rajkowitsch, L., and R. Schroeder. "Dissecting Rna Chaperone Activity." RNA 13.12 (2007): 2053-60.
Ratti, A., and E. Buratti. "Physiological Functions and Pathobiology of Tdp-43 and Fus/Tls Proteins." J Neurochem 138 Suppl 1 (2016): 95-111.
Rhodes, D., and H. J. Lipps. "G-Quadruplexes and Their Regulatory Roles in Biology." Nucleic Acids Res 43.18 (2015): 8627-37.
Richards, R. I., et al. "Rna Pathogenesis Via Toll-Like Receptor-Activated Inflammation in Expanded Repeat Neurodegenerative Diseases." Front Mol Neurosci 6 (2013): 25.
Rihan, K., et al. "A New Cis-Acting Motif Is Required for the Axonal Smn-Dependent Anxa2 Mrna Localization." RNA 23.6 (2017): 899-909.
Rodbard, D., and A. Chrambach. "Estimation of Molecular Radius, Free Mobility, and Valence Using Polyacylamide Gel Electrophoresis." Anal Biochem 40.1 (1971): 95-134.
Romano, V., et al. "The Structural Integrity of Tdp-43 N-Terminus Is Required for Efficient Aggregate Entrapment and Consequent Loss of Protein Function." Prion 9.1 (2015): 1-9.
Rujan, I. N., J. C. Meleney, and P. H. Bolton. "Vertebrate Telomere Repeat Dnas Favor External Loop Propeller Quadruplex Structures in the Presence of High Concentrations of Potassium." Nucleic Acids Res 33.6 (2005): 2022-31.
Ryder, S. P., M. I. Recht, and J. R. Williamson. "Quantitative Analysis of Protein-Rna Interactions by Gel Mobility Shift." Methods Mol Biol 488 (2008): 99-115.
Rye, H. S., et al. "Stable Fluorescent Dye-DNA Complexes in High Sensitivity Detection of Protein-DNA Interactions. Application to Heat Shock Transcription Factor." J Biol Chem 268.33 (1993): 25229-38.
Saldi, T. K., et al. "Tdp-1, the Caenorhabditis Elegans Ortholog of Tdp-43, Limits the Accumulation of Double-Stranded Rna." EMBO J 33.24 (2014): 2947-66.
Salomon-Ferrer, R., et al. "Routine Microsecond Molecular Dynamics Simulations with Amber on Gpus. 2. Explicit Solvent Particle Mesh Ewald." J Chem Theory Comput 9.9 (2013): 3878-88.
Sasaguri, H., et al. "The Extreme N-Terminus of Tdp-43 Mediates the Cytoplasmic Aggregation of Tdp-43 and Associated Toxicity in Vivo." Brain Res 1647 (2016): 57-64.
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. "Nih Image to Imagej: 25 Years of Image Analysis." Nat Methods 9.7 (2012): 671-5.
Sephton, C. F., et al. "Identification of Neuronal Rna Targets of Tdp-43-Containing Ribonucleoprotein Complexes." J Biol Chem 286.2 (2011): 1204-15.
Sephton, C. F., et al. "Tdp-43 Is a Developmentally Regulated Protein Essential for Early Embryonic Development." J Biol Chem 285.9 (2010): 6826-34.
Stanton, A., et al. "Recombination Events among Virulence Genes in Malaria Parasites Are Associated with G-Quadruplex-Forming DNA Motifs." BMC Genomics 17.1 (2016): 859.
Subramanian, M., et al. "G-Quadruplex Rna Structure as a Signal for Neurite Mrna Targeting." EMBO Rep 12.7 (2011): 697-704.
Takahama, K., et al. "Regulation of Telomere Length by G-Quadruplex Telomere DNA- and Terra-Binding Protein Tls/Fus." Chem Biol 20.3 (2013): 341-50.
Tataurov, A. V., Y. You, and R. Owczarzy. "Predicting Ultraviolet Spectrum of Single Stranded and Double Stranded Deoxyribonucleic Acids." Biophys Chem 133.1-3 (2008): 66-70.
Todeschini, A. L., A. Georges, and R. A. Veitia. "Transcription Factors: Specific DNA Binding and Specific Gene Regulation." Trends Genet 30.6 (2014): 211-9.
Tollervey, J. R., et al. "Characterizing the Rna Targets and Position-Dependent Splicing Regulation by Tdp-43." Nat Neurosci 14.4 (2011): 452-8.
Torimura, M., et al. "Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base." Anal Sci 17.1 (2001): 155-60.
Valton, A. L., and M. N. Prioleau. "G-Quadruplexes in DNA Replication: A Problem or a Necessity?" Trends Genet 32.11 (2016): 697-706.
Vanden Broeck, L., P. Callaerts, and B. Dermaut. "Tdp-43-Mediated Neurodegeneration: Towards a Loss-of-Function Hypothesis?" Trends Mol Med 20.2 (2014): 66-71.
Varani, G., and W. H. McClain. "The G X U Wobble Base Pair. A Fundamental Building Block of Rna Structure Crucial to Rna Function in Diverse Biological Systems." EMBO Rep 1.1 (2000): 18-23.
Voigt, A., et al. "Tdp-43-Mediated Neuron Loss in Vivo Requires Rna-Binding Activity." PLoS One 5.8 (2010): e12247.
Wang, H. Y., et al. "Structural Diversity and Functional Implications of the Eukaryotic Tdp Gene Family." Genomics 83.1 (2004): 130-9.
Wang, K., et al. "Using Fam Labeled DNA Oligos to Do Rna Electrophoretic Mobility Shift Assay." Mol Biol Rep 37.6 (2010): 2871-5.
Wang, Q., et al. "G-Quadruplex Formation at the 3' End of Telomere DNA Inhibits Its Extension by Telomerase, Polymerase and Unwinding by Helicase." Nucleic Acids Res 39.14 (2011): 6229-37.
Weitzmann, M. N., K. J. Woodford, and K. Usdin. "The Development and Use of a DNA Polymerase Arrest Assay for the Evaluation of Parameters Affecting Intrastrand Tetraplex Formation." Journal of Biological Chemistry 271.34 (1996): 20958-64.
Wils, H., et al. "Tdp-43 Transgenic Mice Develop Spastic Paralysis and Neuronal Inclusions Characteristic of Als and Frontotemporal Lobar Degeneration." Proc Natl Acad Sci U S A 107.8 (2010): 3858-63.
Woodford, K. J., R. M. Howell, and K. Usdin. "A Novel K(+)-Dependent DNA Synthesis Arrest Site in a Commonly Occurring Sequence Motif in Eukaryotes." J Biol Chem 269.43 (1994): 27029-35.
Wu, L. S., et al. "Tdp-43, a Neuro-Pathosignature Factor, Is Essential for Early Mouse Embryogenesis." Genesis 48.1 (2010): 56-62.
Xu, Y. F., et al. "Wild-Type Human Tdp-43 Expression Causes Tdp-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice." J Neurosci 30.32 (2010): 10851-9.
Yan, J., et al. "An Intramolecular G-Quadruplex Structure Formed in the Human Met Promoter Region and Its Biological Relevance." Mol Carcinog 55.5 (2016): 897-909.
You, H., et al. "Stability and Kinetics of C-Myc Promoter G-Quadruplexes Studied by Single-Molecule Manipulation." J Am Chem Soc 137.7 (2015): 2424-7.
Zhang, Y. J., et al. "The Dual Functions of the Extreme N-Terminus of Tdp-43 in Regulating Its Biological Activity and Inclusion Formation." Hum Mol Genet 22.15 (2013): 3112-22.
Zhao, H., P. H. Brown, and P. Schuck. "On the Distribution of Protein Refractive Index Increments." Biophys J 100.9 (2011): 2309-17.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *