帳號:guest(3.142.252.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林旻冠
作者(外文):Lin, Min-Guan
論文名稱(中文):引物合成體之起始蛋白PriA其結構與功能探討
論文名稱(外文):Structural and functional investigation of primosome initiator protein, PriA
指導教授(中文):蕭傳鐙
孫玉珠
指導教授(外文):Hsiao, Chwan-Deng
Sun, Yuh-Ju
口試委員(中文):袁小琀
詹迺立
殷献生
口試委員(外文):Yuan, Hanna
Chan, Nei-Li
Yin, Hsien-Sheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080844
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:95
中文關鍵詞:引物合成體
外文關鍵詞:primosomePriA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
細胞遭受UV、環境中不同因子的壓力亦或是其他傷害時,常會造成DNA模板損傷而使得DNA複製過程中斷。在細菌中,最主要的DNA複製重啟機制是透過PriA所調控的途徑,此外還包含其他引物合成體(primosome)成員。然而,格蘭氏陰性菌與陽性菌之引物合成體成員除PriA與複製解旋酶外,其他成員皆有所不同。在格蘭氏陽性菌中其引物合成體成員包含:PriA,DnaD,DnaB與DnaC/I複合體,而且DnaD與DnaB在整個聚合得過程中,先於複製解旋酶進入複製重啟的位置。其中, PriA為一3端至5端之superfamily 2 DNA解旋酶,在DNA複製重啟過程中扮演兩個主要角色,PriA會辨識損傷之DNA並與其結合,同時協調幫助其它引物合成體 (primosome) 成員結合,使得DNA複製重啟過程得以順利完成。在本研究中,我們藉由生化實驗分別探討嗜熱脂肪芽孢桿菌PriA (GstPriA) 和肺炎鏈球菌PriA (SpPriA) 其ATP水解活性與DNA解旋能力。為了更進一步了解GstPriA和SpPriA之活性我們設計了不同型態之DNA受質進行實驗,實驗結果顯示不同於GstPriA之DNA解旋活性,SpPriA無法解旋高GC含量之DNA受質。然而,引物合成體成員DnaD則能夠做為輔助蛋白之角色 (accessory protein)提高PriA之酵素活性,並藉其結合單股DNA之能力使得停滯之複製叉不穩定幫助SpPriA克服其DNA解旋能力之限制。
When cells are stressed by ultraviolet irradiation or other environmental damaging treatments, DNA replication forks often encounter template DNA lesions, which can stall the progression of the replication forks. In bacteria, the PriA-dependent pathway is the major replication restart mechanism and it requires several primosome proteins. However, PriA in Gram-negative and –positive bacteria differ in their recruitment of subsequent loader proteins before recruitment of the replicative helicase. In Gram-positive bacteria, the primosome assembly process requires members PriA, DnaD, DnaB, DnaC/I complex. Moreover, DnaD and DnaB are known to have prime role in the assembly of helicase-loader complex. Among them, the PriA protein—a 3′ to 5′ superfamily-2 DNA helicase—is the key factor recognizing DNA lesions and it further recruits other proteins. Here, we investigated the PriA ATPase and helicase activities of Geobacillus stearothermophilus (GstPriA) and Streptococcus pneumoniae (SpPriA) through biochemical and kinetic analyses. Using various DNA duplexes with unstructured single-stranded regions, we observed distinct unwinding abilities for GstPriA and SpPriA according to increased GC content of duplex DNA substrate. In contrast to the unwinding activity of GstPriA helicase, we found that SpPriA is unable to unwind duplex DNA substrate with high GC content. However, the presence of DnaD loader protein allows SpPriA to unwind such duplex DNA. Our findings suggest that SpPriA possesses limited unwinding ability in high GC DNA and that DnaD acts as an accessory protein to destabilize stalled replication forks through its single-stranded DNA binding ability, thereby enhancing PriA unwinding activity.
摘要 I
Abstract II
致謝 IV
CONTENTS V
List of Table VIII
List of Figure IX
Chapter 1. Introduction 1
CHAPTER 2. MATERIALS AND METHODS
2.1 Plasmid construction 6
2.2 Purification of GstPriA and SpPriA 6
2.3 Purification of GstDnaB 8
2.4 Purification of SaDnaD and SpDnaD 9
2.5 Construction of DNA substrates 9
2.6 ATPase assay 10
2.7 Helicase activity assays 11
2.8 Equilibrium DNA binding assays 12
2.9 GST pulldown assays 13
2.10 Sedimentation-velocity analytical ultracentrifugation 13
2.11 Electrophoresis mobility shift assays 14
2.12 Protein homology modeling and quality assessment 15
2.13 Crystallizaiton 16
CHAPTER 3. RESULTS
3.1 Sequence disparity of PriA between Gram-negative and -positive bacteria 18
3.2 PriA ATPase activity 19
3.3 GstPriA and SpPriA reveal different helicase activities 20
3.4 DNA-binding activity of SpPriA and GstPriA 22
3.5 DnaB loader protein interacts physically with PriA and binds ssDNA substrate through its C-terminal domain 24
3.6 DnaD enhances the ATPase activity of PriA 27
3.7 PriA requires the co-loader DnaD to facilitate duplex DNA unwinding efficiency 30
3.8 The possibility for distinctive GstPriA and SpPriA helicase activities 31
CHAPTER 4. DISSCUSSION 35
CHAPTER 5. FUTURE WORK 39
TABLES 42
FIGRUES 45
APPENDIX 77
REFERENCES 84
1. Tricia A.Windgassen, Sarah R. Wessel, Basudeb Bhattacharyya and Keck, J.L. (2017) Mechanisms of bacterial DNA replication restart. Nucleic Acids Res., 46, 504-519.
2. S. C. Kowalczykowski. (2000) Initiation of genetic recombination and recombination-dependent replication. Trends. Biochem. Sci., 25, 156-165.
3. M. M Cox, M. F. Goodman, K. N. Kreuzer, D. J. Sherratt, S. J. Sandler and K. J. Marians. (2000) The importance of repairing stalled replication forks. Nature, 404, 37-41.
4. S. J. Sandler and K. J. Marians. (2000) Role of PriA in replication fork reactivation in Escherichia coli. J. Bacteriol., 182, 9-13.
5. K. J. Marians. (2000) Replication and recombination intersect. Curr. Opin. Genet. Dev., 10, 151-156.
6. M. M. Cox. (2001) Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet., 35, 53-82.
7. P. McGlynn and R. G. Lloyd. (2002) Recombinational repair and restart of damaged replication forks. Nat. Rev. Mol. Cell Biol., 3, 859-870.
8. G. C., J.A. and A. Kornberg. (1993) Assembly of the primosome of DNA replication in Escherichia coli. J. Biol. Chem., 268, 19204-19209.
9. S. Marsin, S. McGovern, S. D. Ehrlich, C. Bruand and P. Polard. (2001) Early steps of Bacillus subtilis primosome assembly. J. Biol. Chem., 276, 45818-45825.
10. J. Shlomai and A. Kornberg. (1980) A prepriming DNA replication enzyme of Escherichia coli. II. Actions of protein n': a sequence-specific, DNA-dependent ATPase. J. Biol. Chem., 255, 6794-6798.
11. K. J. Marians. (2000) PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci., 25, 185-189.
12. E. Arias-Palomo, V. L. O'Shea, I. V. Hood and J. M. Berger. (2013) The bacterial DnaC helicase loader is a DnaB ring breaker. Cell, 153, 438-448.
13. M. Lopper, R. Boonsombat, S. J. Sandler and J. L. Keck. (2007) A hand-off mechanism for primosome assembly in replication restart. Mol. Cell, 26, 781-793.
14. M. Makowska-Grzyska and J. M. Kaguni. (2010) Primase directs the release of DnaC from DnaB. Mol. Cell, 37, 90-101.
15. M. R. Szymanski, M. J. Jezewska and W. Bujalowski. (2011) Binding of two PriA-PriB complexes to the primosome assembly site initiates primosome formation. J. Mol. Biol., 411, 123-142.
16. Chris J. Cadman, Matthew Lopper, Peter B. Moon, James L. Keck and Peter McGlynn. (2005) PriB Stimulates PriA Helicase via an Interaction with Single-stranded DNA. J. Biol. Chem., 280, 39693-39700.
17. J. Liu, P. Nurse and K. J. Marians. (1996) The ordered assembly of the phiX174-type primosome. III. PriB facilitates complex formation between PriA and DnaT. J. Biol. Chem., 271, 15656-15661.
18. C. Bruand, S. D. Ehrlich and L. Janniere. (1995) Primosome assembly site in Bacillus subtilis. EMBO J., 14, 2642-2650.
19. C. Bruand, M. Farache, S. McGovern, S. D. Ehrlich and P. Polard. (2001) DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Mol. Microbiol., 42, 245-255.
20. S. Moriya, Y. Imai, A. K. Hassan and N. Ogasawara. (1999) Regulation of initiation of Bacillus subtilis chromosome replication. Plasmid, 41, 17-29.
21. P. Polard, S. Marsin, S. McGovern, M. Velten, D. B. Wigley, S. D. Ehrlich and C. Bruand. (2002) Restart of DNA replication in Gram-positive bacteria: functional characterisation of the Bacillus subtilis PriA initiator. Nucleic Acids Res., 30, 1593-1605.
22. Alexander E. Gorbalenya and Eugene V. Koonin. (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol., 3, 419-429.
23. K. H. Zavitz and K. J. Marians. (1992) ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J. Biol. Chem., 267, 6933-6940.
24. M. S. Lee and K. J. Marians. (1987) Escherichia coli replication factor Y, a component of the primosome, can act as a DNA helicase. Proc. Natl. Acad. Sci. U. S. A., 84, 8345-8349.
25. P. Nurse, R. J. DiGate, K. H. Zavitz and K. J. Marians. (1990) Molecular cloning and DNA sequence analysis of Escherichia coli priA, the gene encoding the primosomal protein replication factor Y. Proc. Natl. Acad. Sci. U. S. A., 87, 4615-4619.
26. B. Bhattacharyya, N. P. George, T. M. Thurmes, R. Zhou, N. Jani, S. R. Wessel, S. J. Sandler, T. Ha and J. L. Keck. (2014) Structural mechanisms of PriA-mediated DNA replication restart. Proc. Natl. Acad. Sci. U. S. A., 111, 1373-1378.
27. M. J. Carneiro, W. Zhang, C. Ioannou, D. J. Scott, S. Allen, C. J. Roberts and P. Soultanas. (2006) The DNA-remodelling activity of DnaD is the sum of oligomerization and DNA-binding activities on separate domains. Mol. Microbiol., 60, 917-924.
28. S. Schneider, W. Zhang, P. Soultanas and M. Paoli. (2008) Structure of the N-terminal oligomerization domain of DnaD reveals a unique tetramerization motif and provides insights into scaffold formation. J. Mol. Biol., 376, 1237-1250.
29. Winston, S. and Sueoka, N. (1980) DNA-membrane association is necessary for initiation of chromosomal and plasmid replication in Bacillus subtilis. Proc Natl Acad Sci U S A, 77, 2834-2838.
30. Zhang, W., Carneiro, M.J., Turner, I.J., Allen, S., Roberts, C.J. and Soultanas, P. (2005) The Bacillus subtilis DnaD and DnaB proteins exhibit different DNA remodelling activities. J Mol Biol, 351, 66-75.
31. Rokop, M.E., Auchtung, J.M. and Grossman, A.D. (2004) Control of DNA replication initiation by recruitment of an essential initiation protein to the membrane of Bacillus subtilis. Mol Microbiol, 52, 1757-1767.
32. D. R. Zeigler. (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology, 160, 1-11.
33. E. Nuermberger and W. R. Bishai. (2004) The clinical significance of macrolide-resistant Streptococcus pneumoniae: it's all relative. Clin. Infect. Dis., 38, 99-103.
34. M. Kirchgesser and N. Dahlmann. (1990) A colorimetric assay for the determination of acid nucleoside triphosphatase activity. J. Clin. Chem. Clin. Biochem., 28, 407-411.
35. M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T. Gallo Cassarino, M. Bertoni, L. Bordoli et al. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 42, W252-258.
36. T. Tanaka, T. Mizukoshi, K. Sasaki, D. Kohda and H. Masai. (2007) Escherichia coli PriA protein, two modes of DNA binding and activation of ATP hydrolysis. J. Biol. Chem., 282, 19917-19927.
37. K. Sasaki, T. Ose, N. Okamoto, K. Maenaka, T. Tanaka, H. Masai, M. Saito, T. Shirai and D. Kohda. (2007) Structural basis of the 3'-end recognition of a leading strand in stalled replication forks by PriA. EMBO J., 26, 2584-2593.
38. Y. H. Huang, Y. Lien, C. C. Huang and C. Y. Huang. (2016) Characterization of Staphylococcus aureus primosomal DnaD protein: highly conserved C-terminal region is crucial for ssDNA and PriA helicase binding but not for DnaA protein-binding and self-tetramerization. PLoS One, 11, e0157593.
39. Y. C Li, V. Naveen, M. G. Lin and C. D. Hsiao. (2017) Structural analyses of the bacterial primosomal protein DnaB reveal that it is a tetramer and forms a complex with a primosomal re-initiation protein. J. Biol. Chem., 292, 15744-15757.
40. S. Wickner and J. Hurwitz. (1975) Association of phiX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of phiX174 DNA. Proc. Natl. Acad. Sci. U. S. A., 72, 3342-3346.
41. R. Galletto, M. J. Jezewska and W. Bujalowski. (2004) Multistep sequential mechanism of Escherichia coli helicase PriA protein-ssDNA interactions. Kinetics and energetics of the active ssDNA-searching site of the enzyme. Biochemistry, 43, 11002-11016.
42. M. E. Lopper, J. Boone and C. Morrow. (2015) Deinococcus radiodurans PriA is a pseudohelicase. PLoS One, 10, e0133419.
43. H. Masai, J. Deneke, Y. Furui, T. Tanaka and K. I. Arai. (1999) Escherichia coli and Bacillus subtilis PriA proteins essential for recombination-dependent DNA replication: involvement of ATPase/helicase activity of PriA for inducible stable DNA replication. Biochimie, 81, 847-857.
44. T. Tanaka, C. Taniyama, K. Arai and H. Masai. (2003) ATPase/helicase motif mutants of Escherichia coli PriA protein essential for recombination-dependent DNA replication. Genes Cells, 8, 251-261.
45. I. Donmez and S. S. Patel. (2008) Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase. EMBO J., 27, 1718-1726.
46. D. S. Johnson, L. Bai, B. Y. Smith, S. S. Patel and M. D. Wang. (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 129, 1299-1309.
47. T. Lionnet, M. M. Spiering, S. J. Benkovic, D. Bensimon and V. Croquette. (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc. Natl. Acad. Sci. U. S. A., 104, 19790-19795.
48. G. W. Jr. Rogers, N. J. Richter and W. C. Merrick. (1999) Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem., 274, 12236-12244.
49. Y. Kawamura, X. G. Hou, F. Sultana, H. Miura and T. Ezaki. (1995) Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int. J. Syst. Bacteriol., 45, 406-408.
50. T. Pugatsch and H. Weber. (1979) A thermostable, sequence-specific restriction endonuclease from Bacillus stearothermophilus: BstPI. Nucleic Acids Res., 7, 1429-1444.
51. J. Liu and K. J. Marians. (1999) PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem., 274, 25033-25041.
52. M. R. Szymanski, M. J. Jezewska and W. Bujalowski. (2010) The Escherichia coli PriA helicase-double-stranded DNA complex: location of the strong DNA-binding subsite on the helicase domain of the protein and the affinity control by the two nucleotide-binding sites of the enzyme. J. Mol. Biol., 402, 344-362.
53. M. J. Jezewska and W. Bujalowski. (2000) Interactions of Escherichia coli replicative helicase PriA protein with single-stranded DNA. Biochemistry, 39, 10454-10467.
54. M. J. Jezewska, S. Rajendran and W. Bujalowski. (2000) Escherichia coli replicative helicase PriA protein-single-stranded DNA complex. Stoichiometries, free energy of binding, and cooperativities. J. Biol. Chem., 275, 27865-27873.
55. P. Nurse, J. Liu and K. J. Marians. (1999) Two modes of PriA binding to DNA. J. Biol. Chem., 274, 25026-25032.
56. C. Bruand, M. Velten, S. McGovern, S. Marsin, C. Serena, S. D. Ehrlich and P. Polard. (2005) Functional interplay between the Bacillus subtilis DnaD and DnaB proteins essential for initiation and re-initiation of DNA replication. Mol. Microbiol., 55, 1138-1150.
57. M. Velten, S. McGovern, S. Marsin, S. D. Ehrlich, P. Noirot and P. Polard. (2003) A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol. Cell., 11, 1009-1020.
58. G. S. Briggs, W. K. Smits and P. Soultanas. (2012) Chromosomal replication initiation machinery of low-G+C-content Firmicutes. J. Bacteriol., 194, 5162-5170.
59. T. M. Lohman, E. J. Tomko and C. G. Wu. (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat. Rev. Mol. Cell Biol., 9, 391-401.
60. C. J. Cadman and P. McGlynn. (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res., 32, 6378-6387.
61. R. Galletto, M. J. Jezewska and W. Bujalowski. (2004) Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3' arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase. J. Mol. Biol., 343, 101-114.
62. C. J. Cadman and P. McGlynn. (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res, 32, 6378-6387.
63. J. Si, R. Zhao and R. Wu. (2015) An overview of the prediction of protein DNA-binding sites. Int. J. Mol. Sci., 16, 5194-5215.
64. E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, MR. Wilkins, RD. Appel and A. Bairoch. (2005) Protein Identification and Analysis Tools on the ExPASy Server. The proteomics protocols handbook. (Walker, JM., ed.). Humana, Totowa, NJ, pp. 571-607.
65. J. Kyte and R. F. Doolittle. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157, 105-132.
66. Yun, D.J., Ibeas, J.I., Lee, H., Coca, M.A., Narasimhan, M.L., Uesono, Y., Hasegawa, P.M., Pardo, J.M. and Bressan, R.A. (1998) Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell, 1, 807-817.
67. Wharton, R.P., Sonoda, J., Lee, T., Patterson, M. and Murata, Y. (1998) The Pumilio RNA-binding domain is also a translational regulator. Mol Cell, 1, 863-872.
68. H. W. Chen, S. H. North and H. Nakai. (2004) Properties of the PriA helicase domain and its role in binding PriA to specific DNA structures. J. Biol. Chem., 279, 38503-38512.
69. J. Lee, P. D. 2nd Chastain, T. Kusakabe, J. D. Griffith and C. C. Richardson. (1998) Coordinated leading and lagging strand DNA synthesis on a minicircular template. Mol. Cell, 1, 1001-1010.
70. H. Nakai and C. C. Richardson. (1986) Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7. Protein-protein and protein-DNA interactions involved in RNA-primed DNA synthesis. J. Biol. Chem., 261, 15208-15216.
71. Li, Y., Schroeder, J.W., Simmons, L.A. and Biteen, J.S. (2018) Visualizing bacterial DNA replication and repair with molecular resolution. Curr Opin Microbiol, 43, 38-45.
72. F. Corpet. (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res., 16, 10881-10890.
73. X. Robert and P. Gouet. (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res., 42, W320-324.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *