帳號:guest(3.145.16.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林挺輝
作者(外文):Lin, Ting-Hui
論文名稱(中文):利用桿狀病毒平台生產H7N9流感疫苗及H5N2流感的結構分析
論文名稱(外文):Establishing baculovirus-based platforms for development of influenza H7N9 vaccines and characterizing structural biology of influenza H5 hemagglutinin
指導教授(中文):李敏西
吳文桂
指導教授(外文):Lee, Min-Shi
Wu, Wen-Guey
口試委員(中文):吳宗遠
吳夙欽
吳宗益
口試委員(外文):Wu, Tzong-Yuan
Wu, Suh-Chin
Wu, Chung-Yi
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080837
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:78
中文關鍵詞:桿狀病毒表現系統流感病毒H7N9流感病毒H5N2
外文關鍵詞:baculovirus expression systeminfluenza H7N9influenza H5N2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:260
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在2013年中國爆發了新型禽流感H7N9的大流行,這個新型的病毒從2013到2017共造成了40%的死亡率。在台灣,有五個分別來自中國的第一波、第二波及第五波的境外感染。因此開發H7N9的疫苗來因應大流行是非常重要的事情。針對H7N9抗原所引起的低免疫反應,我們利用了趕狀病毒表現系統設計了兩個不同的表現載體,一個是分泌型的表現 (sH7),一個是膜蛋白的表現 (mH7)。 mH7蛋白在純化過後形成具有8192的血球凝集力價的高度整齊排列的聚合體。相反的,sH7蛋白無法形成聚合體也對血球沒有凝集效果。儘管二級結構在sH7及mH7蛋白並沒有差別,在熱穩定實驗當中mH7在52度比sH7有著較好的穩定度。因此mH7可以在老鼠的實驗當中在注射第二劑後引發較好的免疫反應而sH7卻無法引起有效的免疫反應。因此mH7蛋白可以進一步的應用開發在H7N9流感病毒大爆發的疫苗開發上。
新型流感H5N2從2003年就開始在台灣流傳。在2012年,這個低致病性的H5N2病毒在雞隻當中演化成高致病性的病毒且造成了巨大的經濟損失。台灣疾病管制局在141個曾經接觸被感染的禽場的受測者當中發現了4.3%的血清陽轉率。HA蛋白的受體接受位的胺基酸突變是其中一個造成禽流感傳染給人的重要機制。我們利用了趕狀病毒表現系統表現H5N2 HA蛋白並且利用了結構學的方法發現在受體接受位的兩個胺基酸突變會造成受體專一性的改變。野生的HA蛋白與禽流感的sia-1醣有9個氫鍵的結合,顯示HA與禽流感有著較強的親和力 (0.48 μm)。與野生的HA比較,人類受器的sia醣在G228S突變體中往外位移了1.5 Å導致sia接近193號胺基酸。G228S變異體與人類的受器的親和力大於與禽類受器的親和力但Q226L變異體卻在與人類的受器結合方面有著較強的親和力。E190D、K193和N224K胺基酸的變異也導入Q226L變異體當中來試圖增加Q226L變異體與人類受器的結合能力。然而在E190D與K193T導入226L變異體後人類與禽類的結合能力確因此被消除。N224K胺基酸的突變與Q226L變異體結合後增強了Q226L變異體與人類受器結合的能力。這些發現就像在2013年爆發的新型H7N9流感上也存在著Q226L胺基酸的突變,對於禽類傳染人類的風險也就增加了,因此HA 受體結合位的胺基酸的變異對於禽類病毒傳變成為可以傳染人類的病毒有著非常重要的影響。
In 2013, avian influenza H7N9 widely caused human infections in China. This novel H7N9 virus caused about 40% case-fatality from 2013 to 2017. In Taiwan, five importeded human cases from china have been reported during the first, second and five waves. Therefore, development of influenza H7N9 vaccine is critical for pandemic preparedness. To overcome lower immunogenicity induced by recently recombinant H7N9 vaccine in mice study, recombinant full-length (mH7) and secreted ectodomain-based (sH7) protein were produced in our baculovirus expression system. After protein purification, mH7 was detected with highly order oligo-rosette in Small-angle X-ray scattering (SAXS) and had a high hemagglutinin (HA) titer 8192. In contrast to mH7, sH7 could not form an oligo-rosette structure and did not have HA titer. Although mH7 and sH7 did not have significant different in secondary structure, the mH7 still had better thermal stability (52 °C) than sH7 (43 °C). In a mice immunization study, the mH7 construct but not the sH7 construct could induce robust HI (GMT=101 vs. GMT=10) and neutralizing antibody titers (GMT=112 vs. GMT=25). In conclusion, further development of the mH7 vaccine candidate is desirable.
Novel avian influenza virus H5N2 has been circulating in Taiwan since 2003. In 2012, the low pathogenic H5N2 has evolved into high pathogenic resulting in huge economic lost. Taiwan Centers for Disease Control (CDC) found that 4.3% seroconversion in 141 subjects who had close contacts with infected poultry. The critical step of avian influenza to adapt into human to human transmission is amino acid substitution in HA receptor binding site (RBS). We employed the baculovirus platform to generate recombinant H5 HA for structural biology study and found that two amino acid mutations could change receptor binding specificity. In wild type HA and avian receptor analogue 3SLN (α2,3-Sialyl-acetyllactosamine) complex, sia-1 made 9 hydrogen bond with RBS and displayed stronger binding affinity to 3SLN (with 0.48 μm) in SPR experiment. Comparing to wild-type HA, the sia-1 of human receptor 6SLN (α2,6-Sialyl-acetyllactosamine) in G228S mutant was observed moving toward outside with 1.5 Å resulting in close to K193. The binding affinity of G228S with 6SLN (>5μm) is lower than 3SLN (3.3μm) whereas the Q226L mutant showed significantly human binding ability and abolished almost all binding capacity with avian glycans. K193T, N224K, and E190D were also introduced into Q226L mutant to enhance binding ability with human glycans, respectively. However, E190D and K193T mutations abolished wholly avian and human binding in glycan array and could not be detected in SPR experiment. N224K combined with Q266L enhanced 2-6 binding in glycan array and showed quantitatively switch from avian to human. In conclusion, one amino acid substitution could alter influenza virus receptor specific, like H7N9 pandemic-like virus in 2013, which is already have Q226L mutation. Therefore, the RBS variation increase the zoonotic transmission potential between avian and human.
Introduction 13
Part1: Improving immunogenicity of influenza virus H7N9 recombinant hemagglutinin for vaccine development 20
Materials and Methods 21
Recombinant HA construction 21
Baculovirus production 21
Expression and purification 22
Hemadsorption test 23
Recombinant protein stability assay 23
SDS-PAGE and Western blotting 24
Circular dichroism assay 24
Small-angle X-ray scattering (SAXS) 24
Animal vaccination 26
Serological test 27
Soluble hemagglutination assay 27
Results 28
Construction and identification of HA expressed in insect cells 28
Structural stability of H7 protein in protease and thermal treatment 29
Characterization of recombinant mH7 by small angle X-ray scattering 30
Antibody responses 30
Discussion 32
Figure legends 35
Fig 1. Diagram of two different influenza H7 expression constructs. (A) The sH7 ectodomain (18-513) was incorporated with N-terminal secretion signal (gp67), C-terminal hexa-His tag followed by trimerization foldon domain and thrombin cleavage site. (B) The mH7 construct was designed with a full-length (A/Taiwan/1/2013) sequence containing original signal peptide and TM domain under the polyhedron (PH) promoter. The protease cleavage site between HA1 and HA2 is pointed to with an arrow. After trypsin cleavage, the sH7 and mH7 were separated into HA1 and HA2. 35
Fig 2. Characterization of mH7 and sH7 using size exclusion chromatography. 36
Fig 3. Analysis of purified H7 protein after enzymatic digestion using SDS-PAGE and Western blot after purification and 30 days after purification. 37
Fig 4. Secondary structure analysis of sH7, sH7-m and mH7. 38
Fig 5. Thermal stability assay to evaluate the effect of foldon and TM domain with temperature escalation.. 39
Fig 6. HPLC/SAXS intensity and the evolution of the radius of gyration (Rg) and the corresponding rosette conformations (as shown) extracted along the sample elution time. 40
Fig 7. Hemagglutinin inhibition and neutralization titers in mice immunized with egg-derived influenza H7N9 whole virus antigen (NIBSC H7N9) and recombinant influenza H7N9 HA monomer (sH7-m). 41
Fig 8. Hemagglutinin inhibition and neutralization titers in mice immunized with egg-derived influenza H7N9 whole virus antigen (NIBSC H7N9) and recombinant influenza H7N9 membrane-based HA (mH7).. 42
Part2: Structural basis of receptor binding alternation of endemic Mexican-like chicken H5N2 viruses in Taiwan 43
Material and Method 44
Cloning, expression and protein purification 44
Crystallization, data collection and structural determination 45
Glycan microarray 46
Surface plamon resonance (SPR) analysis 46
Result 48
Sequence Evolution of Receptor Binding Site from H5N2 HA 48
Characterization of H5N2 HA and mutants receptor binding properties 49
Structural characterization of Mexican-like H5N2 HA and HA mutants 50
Enhancement of human receptor binding ability with several residue substitutions in Q226L mutant 51
Characterization the influence of N224K with Q226L mutant 52
Discussion 54
Figure legends 59
Fig 1. Structural comparison of HA receptor binding subdomain. 59
Fig 2. Receptor specificities of wild type H5N2 HA and mutants 60
Fig 3. 2Fo-Fc of electron density maps of human and avian receptor analogues in H5N2 HA crystal structure 61
Fig 4. Crystal structures of 0502 H5N2 HA and G228S mutant with avian (3SLN) and human (6SLN) receptor analogues. 62
Fig 5. Structural comparison of 3SLN and 6SLN in G228S mutant with WT HA 63
Fig 6. Biacore binding properties of H5N2 and mutants HA to avian receptor analogues 3SLN and human analogues 6SLN. 65
Fig 7. Receptor specificities of HA mutants in glycan array. 66
Fig 8. Receptor binding specific of N224KQ226L HA mutant. 68
Fig 9. Binding affinity of N224KQ226L HA mutant with Tetra-antennary. 69
Fig 10. Different orientation of Sia-1 of 3SLN and 6SLN in complex with Q226LG228S HA mutant. 71
Fig 11. Structural comparison of Q226LG228S HA mutant receptor binding subdomain (130-232). 72
Fig 12. Distribution of positive charge in HA1 head domain of H5N2. 73
Table 1. Sequence alignment of basic element in Receptor binding site for H5N2 from 2003 to 2015 in Taiwan. 74
Table 2. Comparison of evolution of receptor binding site among H5N2, H5N1 and H2N2 76
Table 4. list of glycan array 78
Reference 81

1. R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers, Y. Kawaoka, Evolution and ecology of influenza A viruses. Microbiological reviews 56, 152-179 (1992).
2. S. J. Gamblin, J. J. Skehel, Influenza hemagglutinin and neuraminidase membrane glycoproteins. The Journal of biological chemistry 285, 28403-28409 (2010).
3. T. Watanabe, S. Watanabe, Y. Kawaoka, Cellular networks involved in the influenza virus life cycle. Cell host & microbe 7, 427-439 (2010).
4. T. Horimoto, Y. Kawaoka, Influenza: lessons from past pandemics, warnings from current incidents. Nature reviews. Microbiology 3, 591-600 (2005).
5. M. S. Lee, A. Y. Hu, A cell-based backup to speed up pandemic influenza vaccine production. Trends in microbiology 20, 103-105 (2012).
6. Y. Kawaoka, W. J. Bean, R. G. Webster, Evolution of the hemagglutinin of equine H3 influenza viruses. Virology 169, 283-292 (1989).
7. A. H. Reid, T. G. Fanning, J. V. Hultin, J. K. Taubenberger, Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene. Proceedings of the National Academy of Sciences of the United States of America 96, 1651-1656 (1999).
8. C. Scholtissek, W. Rohde, V. Von Hoyningen, R. Rott, On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13-20 (1978).
9. G. J. Smith et al., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122-1125 (2009).
10. R. A. Medina, A. Garcia-Sastre, Influenza A viruses: new research developments. Nature reviews. Microbiology 9, 590-603 (2011).
11. G. Neumann, Y. Kawaoka, Transmission of influenza A viruses. Virology 479-480, 234-246 (2015).
12. WHO. (Accessed 1 November 2018).
13. J. R. Yang et al., Characterization of influenza A (H7N9) viruses isolated from human cases imported into Taiwan. PloS one 10, e0119792 (2015).
14. S. Y. Chang, P. H. Lin, J. C. Tsai, C. C. Hung, S. C. Chang, The first case of H7N9 influenza in Taiwan. Lancet (London, England) 381, 1621 (2013).
15. J. M. Wood, J. P. Weir, Standardisation of inactivated influenza vaccines-Learning from history. Influenza and other respiratory viruses 12, 195-201 (2018).
16. J. Partridge, M. P. Kieny, Global production of seasonal and pandemic (H1N1) influenza vaccines in 2009-2010 and comparison with previous estimates and global action plan targets. Vaccine 28, 4709-4712 (2010).
17. J. M. Wood, Selection of influenza vaccine strains and developing pandemic vaccines. Vaccine 20 Suppl 5, B40-44 (2002).
18. M. M. Cox, J. R. Hollister, FluBlok, a next generation influenza vaccine manufactured in insect cells. Biologicals : journal of the International Association of Biological Standardization 37, 182-189 (2009).
19. J. J. Treanor et al., Evaluation of a recombinant hemagglutinin expressed in insect cells as an influenza vaccine in young and elderly adults. The Journal of infectious diseases 173, 1467-1470 (1996).
20. Y. V. Liu et al., Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine 33, 2152-2158 (2015).
21. R. Izikson et al., Randomized comparison of the safety of Flublok((R)) versus licensed inactivated influenza vaccine in healthy, medically stable adults >/= 50 years of age. Vaccine 33, 6622-6628 (2015).
22. K. Blanchfield et al., Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins. Influenza and other respiratory viruses 8, 628-635 (2014).
23. G. Neumann, H. Chen, G. F. Gao, Y. Shu, Y. Kawaoka, H5N1 influenza viruses: outbreaks and biological properties. Cell research 20, 51-61 (2010).
24. R. Harfoot, R. J. Webby, H5 influenza, a global update. Journal of microbiology (Seoul, Korea) 55, 196-203 (2017).
25. M. C. Cheng et al., Isolation and characterization of potentially pathogenic H5N2 influenza virus from a chicken in Taiwan in 2008. Avian diseases 54, 885-893 (2010).
26. H. S. Wu et al., Influenza A(H5N2) virus antibodies in humans after contact with infected poultry, Taiwan, 2012. Emerging infectious diseases 20, 857-860 (2014).
27. C. C. Lee et al., Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan. Journal of virology 88, 5677-5686 (2014).
28. J. Martin et al., Studies of the binding properties of influenza hemagglutinin receptor-site mutants. Virology 241, 101-111 (1998).
29. J. Stevens et al., Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. Journal of molecular biology 381, 1382-1394 (2008).
30. J. Stevens et al., Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. Journal of molecular biology 355, 1143-1155 (2006).
31. K. Tharakaraman et al., Structural determinants for naturally evolving H5N1 hemagglutinin to switch its receptor specificity. Cell 153, 1475-1485 (2013).
32. S. Yamada et al., Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444, 378-382 (2006).
33. L. M. Chen et al., Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology 412, 401-410 (2011).
34. J. J. Skehel, D. C. Wiley, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual review of biochemistry 69, 531-569 (2000).
35. W. Weis et al., Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426-431 (1988).
36. R. Xu et al., Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science (New York, N.Y.) 342, 1230-1235 (2013).
37. Y. Watanabe, M. S. Ibrahim, Y. Suzuki, K. Ikuta, The changing nature of avian influenza A virus (H5N1). Trends in microbiology 20, 11-20 (2012).
38. M. H. Einstein et al., Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18-45 years. Human vaccines 5, 705-719 (2009).
39. J. Stevens et al., Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science (New York, N.Y.) 303, 1866-1870 (2004).
40. S. Frank et al., Stabilization of short collagen-like triple helices by protein engineering. Journal of molecular biology 308, 1081-1089 (2001).
41. K. Wang et al., Expression and purification of an influenza hemagglutinin--one step closer to a recombinant protein-based influenza vaccine. Vaccine 24, 2176-2185 (2006).
42. M. K. Groftehauge, N. R. Hajizadeh, M. J. Swann, E. Pohl, Protein-ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI). Acta crystallographica. Section D, Biological crystallography 71, 36-44 (2015).
43. H. Yang et al., Structural stability of influenza A(H1N1)pdm09 virus hemagglutinins. Journal of virology 88, 4828-4838 (2014).
44. S. H. Liu et al., Design and construction of a compact end-station at NSRRC for circular-dichroism spectra in the vacuum-ultraviolet region. Journal of synchrotron radiation 17, 761-768 (2010).
45. U.-S. Jeng et al., A small/wide-angle X-ray scattering instrument for structural characterization of air-liquid interfaces, thin films and bulk specimens. Journal of Applied Crystallography 43, 110-121 (2010).
46. Y. Q. Yeh et al., Probing the Acid-Induced Packing Structure Changes of the Molten Globule Domains of a Protein near Equilibrium Unfolding. The journal of physical chemistry letters 8, 470-477 (2017).
47. O. Shih et al., Oligomerization process of Bcl-2 associated X protein revealed from intermediate structures in solution. Physical chemistry chemical physics : PCCP 19, 7947-7954 (2017).
48. M. V. Petoukhov et al., New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45, 342-350 (2012).
49. M. V. Petoukhov, D. I. Svergun, Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophysical journal 89, 1237-1250 (2005).
50. H. Yang, P. J. Carney, J. C. Chang, J. M. Villanueva, J. Stevens, Structural analysis of the hemagglutinin from the recent 2013 H7N9 influenza virus. Journal of virology 87, 12433-12446 (2013).
51. WHO. (World Health Organization, 2002).
52. J. Stevens et al., Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science (New York, N.Y.) 312, 404-410 (2006).
53. C. Bottcher, K. Ludwig, A. Herrmann, M. van Heel, H. Stark, Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy. FEBS letters 463, 255-259 (1999).
54. K. Kuroda, C. Hauser, R. Rott, H. D. Klenk, W. Doerfler, Expression of the influenza virus haemagglutinin in insect cells by a baculovirus vector. The EMBO journal 5, 1359-1365 (1986).
55. J. Crawford et al., Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes. Vaccine 17, 2265-2274 (1999).
56. M. M. van Oers, G. P. Pijlman, J. M. Vlak, Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. The Journal of general virology 96, 6-23 (2015).
57. C. J. Wei et al., Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. Journal of virology 82, 6200-6208 (2008).
58. B. Buckland et al., Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine 32, 5496-5502 (2014).
59. E. Feshchenko et al., Pandemic influenza vaccine: characterization of A/California/07/2009 (H1N1) recombinant hemagglutinin protein and insights into H1N1 antigen stability. BMC biotechnology 12, 77 (2012).
60. G. P. Leser, R. A. Lamb, Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane. Journal of virology 91, (2017).
61. J. S. Rossman, R. A. Lamb, Influenza virus assembly and budding. Virology 411, 229-236 (2011).
62. K. M. Holtz et al., Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss. BMC biotechnology 14, 111 (2014).
63. G. E. Smith et al., Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 31, 4305-4313 (2013).
64. J. Liu et al., Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proceedings of the National Academy of Sciences of the United States of America 106, 17175-17180 (2009).
65. X. Zhu et al., Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants. Cell reports 13, 1683-1691 (2015).
66. S. Herfst et al., Airborne transmission of influenza A/H5N1 virus between ferrets. Science (New York, N.Y.) 336, 1534-1541 (2012).
67. M. Imai et al., Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420-428 (2012).
68. X. Xiong et al., Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497, 392-396 (2013).
69. W. Zhang et al., An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level. Science (New York, N.Y.) 340, 1463-1467 (2013).
70. T. R. Maines et al., Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. Journal of virology 79, 11788-11800 (2005).
71. R. P. de Vries et al., Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS pathogens 13, e1006390 (2017).
72. W. Peng et al., Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. Journal of virology 92, (2018).
73. N. Tzarum et al., The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell reports 19, 235-245 (2017).
74. W. Wang et al., Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. Journal of virology 84, 6570-6577 (2010).
75. A. Chandrasekaran et al., Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nature biotechnology 26, 107-113 (2008).
76. N. Arinaminpathy, B. Grenfell, Dynamics of glycoprotein charge in the evolutionary history of human influenza. PloS one 5, e15674 (2010).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *