帳號:guest(3.16.217.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧禹寧
作者(外文):Lu, Yu-Ning
論文名稱(中文):人類wild type LRRK2可以抑制tau蛋白引起的毒性並通過提高AKT-FoxO1路徑的功能來提高神經細胞存活
論文名稱(外文):Human wild type LRRK2 can decrease tauinduced toxicity and increase AKT-FoxO1 signaling activity to promote cell survival.
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui-Yun
口試委員(中文):桑自剛
范聖興
蔡玉真
陳盛良
口試委員(外文):Sang, Tzu-Kang
Fan, Seng-Sheen
Tsai, Yu-Chen
Chen, Shen-Liang
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:100080805
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:71
中文關鍵詞:帕金森氏症(Parkinson’s disease, PD)LRRK2 WTLRRK2 G2019STau 蛋白過度磷酸化表現Hypophosphorylate紡錘狀細胞Phosphoinositide 3-kinase (PI3K)AktForkhead box protein O1(FoxO1)Glycogen synthase kinase 3 beta (GSK3β)
外文關鍵詞:Parkinson’s disease, PDLRRK2 WTLRRK2 G2019STauhyperphosphorylatehypophosphorylateTangle like structureneurofibrillary tanglesPhosphoinositide 3-kinase (PI3K)AktForkhead box protein O1(FoxO1)Glycogen synthase kinase 3 beta (GSK3β)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
由於醫療的進步與死亡率的大幅降低,現代社會已經趨向老齡化發展,神經退化性疾病的難題已經無法避免。在基因組分析的研究中,指出不同的突變蛋白皆與神經退化性疾病有關,包含了阿茲海默症(Alzheimer's disease, AD)、帕金森氏症(Parkinson’s disease, PD)、亨丁頓舞蹈症(Huntington's disease)與肌萎縮性脊髓側索硬化症(Amyotrophic lateral sclerosis, ALS)等疾病(如:SOD1突變與ALS的致病有關、Tau突變與AD的致病有關、LRRK2與PD的致病高度相關)。過去的研究指出帕金森氏症病人的組織中可以發現LRRK2的突變,而在Wanli W.Smith等人藉由果蠅模式生物的研究中,也指出LRRK2 WT(wild-type)與G2019S突變和PD的致病高度相關。過去研究多是調查LRRK2突變與PD的關係,但是對於LRRK2 WT的功能依然所知甚少。另外一些研究也指出,阿茲海默症相關的Tau蛋白也被發現與PD高度相關,而LRRK2的蛋白功能分析中也顯示與Tau蛋白有關聯。然而對於這兩個蛋白的交互作用,或各別對於帕金森氏症的病理機制依然不甚清楚。因此我們利用果蠅的動物模式,來表現帕金森氏症相關的人類TauWT, LRRK2WT與LRRK2G2019S突變,並觀察LRRK2與Tau在細胞內的分子機轉。結果發現神經細胞中表現LRRK2WT相較於沒有表現 的野生型果蠅,果蠅的生命週期有延長的現象。西方墨點法分析結果發現,LRRK2WT表現時會提高Akt473S磷酸化。我們也對於Akt上游PI3K蛋白做研究,發現LRRK2WT並不會影響PI3K的磷酸化或是蛋白總量上的表現。接著,我們針對Akt下游FoxO1(細胞存活相關蛋白)的研究中發現,LRRK2表現會提高FoxO1256S磷酸化且蛋白總量顯著下降。這現象指出當LRRK2表現時可以提高細胞存活。我們也針對與細胞存活相關的蛋白進行研究,發現LRRK2表現也會增加細胞存活相關蛋白GSK3 beta(GSK3β)9S的磷酸化,且提高神經細胞的存活。我們利用果蠅的動物模式,表現帕金森氏症相關的人類TauWT(Wild type),發現神經細胞型態會隨著時間逐漸改變成紡錘狀的結構。我們還發現Tau蛋白會隨著時間逐漸堆積,並形成線條狀的結構纏繞在一起,這些結構的分子量大約是90-230 kDa左右。過去的研究指出,Tau蛋白在過度磷酸化的情況下容易形成高分子量的聚集,但是我們也發現當 Tau蛋白處於Hypophosphorylation 的情況下,仍然會形成高分子量聚集,且依然具有細胞毒性來引發細胞結構的改變與凋亡。我們也分析細胞凋亡的相關的分子Casepase3與Cytochrome C,發現Tau蛋白的表現確實會引發細胞凋亡的分子訊號進而凋亡。由於先前的研究結果指出,LRRK2WT可以通過影響細胞存活機轉來提高細胞存活,因此我們想了解在Tau蛋白與LRRK2的共同表現下,是否LRRK2仍然具有保護細胞的功能。我們利用果蠅的動物模式共同表現 TauWT、LRRK2WT與LRRK2G2019S,結果驚訝發現LRRK2WT確實可以抑制高分子量Tau蛋白的產生。我們也發現單分子的Tau蛋白明顯表現量低於Tau單獨表現的組別,但是在LRRK2G2019S突變的情況下,卻發現會提升高分子量Tau蛋白的累積。綜合以上結果,我們提出當LRRK2WT表現時可以通過提高Akt-FoxO1與GSK3β細胞傳遞路徑來增加細胞存活率,且LRRK2 WT可以通過降低Tau蛋白的表現量來抑制高分子的Tau生成提高細胞存活,但是這個功能會因為LRRK2的突變而失去。

關鍵字:帕金森氏症(Parkinson’s disease, PD) 、LRRK2 WT (wild-type) LRRK2 G2019S、Tau 蛋白、過度磷酸化表現、Hypophosphorylate、紡錘狀細胞、neurofibrillary tangles、Phosphoinositide 3-kinase (PI3K)、Akt、Forkhead box protein O1(FoxO1)、Glycogen synthase kinase 3 beta (GSK3β)
Abstract
Numerous genome-wide association studies have revealed that many abnormal proteins are involved in diverse neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease (PD), Huntington’s disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. Related pathological studies detected abnormal protein aggregation or accumulation in patient’s brain tissue (such as superoxide dismutase 1 mutations associated with amyotrophic lateral sclerosis; Tau mutations associated with Alzheimer’s disease and PD, and leucine-rich repeat kinase 2 (LRRK2) mutations associated with PD). Recent studies also revealed differential mutations in LRRK2 and Tau in PD patient’s brain tissues. A previous study employed a Drosophila model to express wild type LRRK2 or LRRK2G2019S mutation, and found neurodegeneration in Drosophila eye tissues, also indicating that wild type LRRK2 can induce neurodegeneration, which is associated with PD. LRRK2 mutations are commonly known in both autosomal dominant and sporadic cases, with age as the largest risk factor. Another study shows that Tau H1 haplotype is associated with an increased risk of PD, and also shows that the elevated expression of Tau may increase the risk of PD via a genetically gain-of-function mechanism. However, the mechanism of Tau and wild-type LRRK2 in PD remains unclear. In this study, we investigated the effect of Tau and wild-type LRRK2 in Drosophila PD model. First, we used Drosophila model system to stably express wild-type LRRK2 in neurons and performed a survival assay. The survival assay showed that wild-type LRRK2 enhanced survival compared to the control group in the Drosophila model system. The western blot analysis showed that LRRK2 expression increases the phosphorylation of Akt in Serine 473(473S), but found no difference in Akt upstream kinase protein PI3K. The phosphorylation level of FoxO1 protein, an Akt downstream protein kinase involved in cell apoptosis, was increased by LRRK2 expression. We also conducted a western blot assay to screen other survival-associated proteins and found that GSK3 beta (GSK3β) increased phosphorylation levels by LRRK2 expression. Second, we expressed Tau in Drosophila DA neurons and found that this will trigger the age-dependent formation of Tau containing neurofibrillary tangle-like structures with progressive losses of DA neuron. Surprisingly, contrary to common belief that hyperphosphorylated Tau could aggravate toxicity, the aggregation of Tau is found in DA neurons expressing the modified hypophosphorylated TauAP. Third, we co-expressed wild-type LRRK2 and Tau together in the Drosophila model system and found that the wild-type LRRK2 will decrease the Tau aggregation with protective effects in DA neuron. These data suggest that Tau alone will induce the aggregation and formation of neurofibrillary tangle-like structures in neurons and wild-type LRRK2 expression increases the Akt-FoxO1 and GSK3β pathways to promote cell survival. However, co-expression of Tau and LRRK2 suggests that LRRK2 have a powerful protective function, which can decrease neurofibrillary tangle-like structure formations against Tau protein induced neuron death. These results provide the first in vivo evidence supporting the pro-survival function of LRRK2 via activation of Akt and GSK3β anti-apoptotic mechanisms and protecting cells against Tau induced neuron death.

Keywords: Parkinson’s disease, PD, Tau, LRRK2 WT (wild-type), LRRK2 G2019S, Tau, hyperphosphorylate, hypophosphorylated, Tangle like structure, neurofibrillary tangles, Phosphoinositide 3-kinase (PI3K), Akt, Forkhead box protein O1 (FoxO1, Glycogen synthase kinase 3 beta (GSK3β)
Table of Contents
Table of Contents………………………………………...………………………………………………………….…….……..I
致謝………………………………………..…………………………………………………………………………………….………V
中文摘要……………………………………………………………………………………………………………….…….………..1
Abstract…………………………………………………………………………………………………………………..…..……...3
Introduction……………………………………..……………………………………………………………………………………5
Parkinson’s disease (PD) ………………………………………………………………………………………….………..…5
Biochemical and Physiological roles of Tau protein……………………………………………………...……..…6
Biochemical and Physiological roles of leucine-rich repeat kinase 2 (LRRK2)………..………………7
Tau and mutation of LRRK2 is associated with PD ……..………………………………………….....…...……8
PD and MAPK signaling pathway……………………………………………………………………………....………….9
PI3K/Akt signaling pathway…………..……………………..………………………………………………......…………10
Experimental Procedures……………………………………………………………………………………………………..13
Drosophila Strains and Assays…………………………………….………………………………………………..……..13
Survival rate…………………………………………………………………………………………………………..….....……..13
Western blotting …………………………………………………………………………………………………...…..………..13
Sarkosyl insolubility assay…………………………………………………………………………………….…....……….14
Scanning electron microscopy (SEM) …………………………………………………………………….……....…..15
Statistical Analysis………………………………………………………………………………………………………..……..15
Results……………………………………………………………………………………………………………………….…...…..16
LRRK2 can increase Drosophila survival rate………………………………………………………………..……...16
LRRK2 increase survival, but not through the ERK pathway…………………………………………….…...17
LRRK2 increase survival rate by increasing Akt phosphorylation and inhibiting FoxO1 activity…………………………………………………………………………………………………………………………………19
PD-linked lrrk2 G2019S and R1441C mutations compromise anti-apoptosis function because of a failure in activating AKT …………………..…………………………………………………………………………..22
LRRK2 increase survival rate through GSK3β signaling pathway……....…………………………………23
Formation of abnormal oligomeric tau and tangle-like pathology in DA neurons………………....24
The high molecular weight of tau come from not only hyperphosphorylation but also hypophosphorylation tau accumulation..........................………………………….............................26
Overexpression of tau will induce apoptosis in neuron cell......…………………….........................28
LRRK2 can inhibit Tau protein accumulation into high molecular weight in neuron cell..........28
Discussion………………………………..…………………………………………………………………………………..……30
References………………………………..………………………………………………………………………………….……37
Figure…………………………………………………………………………………………………………………………...……46
Figure 1. Western blotting analysis of humam wild typr LRRK2 express in Drosophila model system. ………………………………………………………………………………………………………………..……………46
Figure 2. The expression of human LRRK2 does not affect ERK phosphorylation levels. ….…47
Figure 3. The expression of human wild type LRRK2 can specifically promote Akt phosphorylation at Ser473. ……………………………………………………………….………….……………..……48
Figure 4. The expression of human wild type LRRK2 cannot promote Akt phosphorylation at Ser308, which controls Akt activation loop……….…………………………………………………………….…49
Figure 5. Human wild type LRRK2 does not function through PI3K to promote Akt phosphorylation at 473S. ……………………….…………………………………………………………………...……50
Figure 6. Human wild type LRRK2 decreases the protein expression level of FoxO1.....…….…51
Figure 7. Human wild type LRRK2 can increase the phosphorylation level of FoxO1 at 256S to promote cell survival. ……………………………………………………………………………………..…………….……52
Figure 8. Human wild type LRRK2 inhibits phosphorylation of GSK3β at 9S to promote cell survival. …………………………………..………………………………………………………………………..………...……53
Figure 9. Human wild-type LRRK2 promotes cell survival, but not through the Akt-mTOR pathway. ………………..………………...…………………………………………………………………………………….…54
Figure 10. PD-linked lrrk2 mutants G2019S and R1441C inhibit the survival promotion function because of failure in Akt phosphorylation…....……………………………………………………....…….....…55
Figure 11. Western blotting analysis of human tauWT, tauAP and tauE14 in Drosophila model system..………...…………………………………………………………………………………….......….…………..…...…56
Figure 12. Expression of htau will induce DA neuron to change cell body into neurofibrillary tangles like structure..………………...……….….....….….…………………………………………………………..…57
Figure 13. Expression of htau can promote the Tau protein age dependent formation into high molecular structure in DA neuron..………...……….....………………………………………………………………59
Figure 14. Expression of htau can lead to Tau protein filamentous aggregates structures in the Drosophila brains..…………………...……………………………………………………………………...…………………61
Figure 15. The high molecular weight Tau proteins come from the hypophosphorylation hTau....………...……………...…………………..……………………………………………………………………………...…62
Figure 16. Overexpression of Tau will promote the high molecular weight formation and induce apoptosis in neuron cell..………...…………………………………………………………………......................…64
Figure 17. LRRK2WT can protect cell regarding total level and high molecular weight of tau but LRRK2G2019S cannot..………...……...…………………………………………………………………...…………...…65
Supplemental Information………………………………………………………………............………………….…….66
Figure S1. Protein domains of human LRRK2. …………………………………………………...……….….……66
Figure S2. The Human wild type lrrk2 expression promotes the Drosophila lifespan……....……67
Figure S3. The model of wild type of LRRK2 protective functions……………………………………..…69
Figure S4. The model of co-expression lrrk2G2019S mutant and human wild type tau….….…70
Table S1. The Antibodies used in this study…..……………..….………………………………………....………71
References
Alessi, D.R. (2001). Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth Medal Lecture. Biochem. Soc. Trans. 29, 1–14.
Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B., and Cohen, P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7, 261–269.
Alonso, A.C., Grundke-Iqbal, I., and Iqbal, K. (1996). Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med. 2, 783–787.
Alonso, A., Zaidi, T., Novak, M., Grundke-Iqbal, I., and Iqbal, K. (2001). Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. U.S.a. 98, 6923–6928.
Anand, V.S., and Braithwaite, S.P. (2009). LRRK2 in Parkinson's disease: biochemical functions. Febs J. 276, 6428–6435.
Arena, G., Gelmetti, V., Torosantucci, L., Vignone, D., Lamorte, G., De Rosa, P., Cilia, E., Jonas, E.A., and Valente, E.M. (2013). PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ. 20, 920–930.
Berwick, D.C., and Harvey, K. (2011). LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol. 21, 257–265.
Binder, L.I., Guillozet-Bongaarts, A.L., Garcia-Sierra, F., and Berry, R.W. (2005). Tau, tangles, and Alzheimer's disease. Biochim. Biophys. Acta 1739, 216–223.
Bonni, A., Brunet, A., West, A.E., Datta, S.R., Takasu, M.A., and Greenberg, M.E. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362.
Brazil, D.P., and Hemmings, B.A. (2001). Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664.
Brown, M.D., and Sacks, D.B. (2009). Protein scaffolds in MAP kinase signalling. Cell. Signal. 21, 462–469.
Cantley, L.C., and Neel, B.G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl. Acad. Sci. U.S.a. 96, 4240–4245.
Carballo-Carbajal, I., Weber-Endress, S., Rovelli, G., Chan, D., Wolozin, B., Klein, C.L., Patenge, N., Gasser, T., and Kahle, P.J. (2010). Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell. Signal. 22, 821–827.
Carpten, J.D., Faber, A.L., Horn, C., Donoho, G.P., Briggs, S.L., Robbins, C.M., Hostetter, G., Boguslawski, S., Moses, T.Y., Savage, S., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444.
Chang, Y.-C., Hung, W.-T., Chang, Y.-C., Chang, H.C., Wu, C.-L., Chiang, A.-S., Jackson, G.R., and Sang, T.-K. (2011). Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model. PLoS Genet. 7, e1001288.
Chen, J., Rusnak, M., Lombroso, P.J., and Sidhu, A. (2009). Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur. J. Neurosci. 29, 287–306.
Chen, P., Nordstrom, W., Gish, B., and Abrams, J.M. (1996). grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773–1782.
Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.
Davie, C.A. (2008). A review of Parkinson's disease. Br. Med. Bull. 86, 109–127.
Di Fonzo, A., Wu-Chou, Y.-H., Lu, C.-S., van Doeselaar, M., Simons, E.J., Rohé, C.F., Chang, H.-C., Chen, R.-S., Weng, Y.-H., Vanacore, N., et al. (2006). A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson's disease risk in Taiwan. Neurogenetics 7, 133–138.
Dorval, V., and Hébert, S.S. (2012). LRRK2 in Transcription and Translation Regulation: Relevance for Parkinson's Disease. Front Neurol 3, 12.
Du, K., and Montminy, M. (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377–32379.
Edwards, T.L., Scott, W.K., Almonte, C., Burt, A., Powell, E.H., Beecham, G.W., Wang, L., Züchner, S., Konidari, I., Wang, G., et al. (2010). Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97–109.
Eldar-Finkelman, H., Seger, R., Vandenheede, J.R., and Krebs, E.G. (1995). Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J. Biol. Chem. 270, 987–990.
Farrer, M., Skipper, L., Berg, M., Bisceglio, G., Hanson, M., Hardy, J., Adam, A., Gwinn-Hardy, K., and Aasly, J. (2002). The tau H1 haplotype is associated with Parkinson's disease in the Norwegian population. Neurosci. Lett. 322, 83–86.
Feng, J., Park, J., Cron, P., Hess, D., and Hemmings, B.A. (2004). Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. 279, 41189–41196.
Ferrer, I., Blanco, R., Carmona, M., Puig, B., Barrachina, M., Gómez, C., and Ambrosio, S. (2001). Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson's disease and Dementia with Lewy bodies. J Neural Transm (Vienna) 108, 1383–1396.
Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1–16.
Franke, T.F., Kaplan, D.R., and Cantley, L.C. (1997). PI3K: downstream AKTion blocks apoptosis. Cell 88, 435–437.
Fulga, T.A., Elson-Schwab, I., Khurana, V., Steinhilb, M.L., Spires, T.L., Hyman, B.T., and Feany, M.B. (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 9, 139–148.
Gloeckner, C.J., Schumacher, A., Boldt, K., and Ueffing, M. (2009). The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J. Neurochem. 109, 959–968.
Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., and Binder, L.I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. U.S.a. 83, 4913–4917.
Guertin, D.A., Stevens, D.M., Thoreen, C.C., Burds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J., and Sabatini, D.M. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859–871.
Hajduch, E., Litherland, G.J., and Hundal, H.S. (2001). Protein kinase B (PKB/Akt)--a key regulator of glucose transport? FEBS Lett. 492, 199–203.
Hanger, D.P., Anderton, B.H., and Noble, W. (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15, 112–119.
Hardy, J., Cookson, M.R., and Singleton, A. (2003). Genes and parkinsonism. Lancet Neurol 2, 221–228.
Hsu, C.H., Chan, D., and Wolozin, B. (2010a). LRRK2 and the stress response: interaction with MKKs and JNK-interacting proteins. Neurodegener Dis 7, 68–75.
Hsu, C.H., Chan, D., Greggio, E., Saha, S., Guillily, M.D., Ferree, A., Raghavan, K., Shen, G.C., Segal, L., Ryu, H., et al. (2010b). MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J. Neurochem. 112, 1593–1604.
Illarioshkin, S.N., Shadrina, M.I., Slominsky, P.A., Bespalova, E.V., Zagorovskaya, T.B., Bagyeva, G.K., Markova, E.D., Limborska, S.A., and Ivanova-Smolenskaya, I.A. (2007). A common leucine-rich repeat kinase 2 gene mutation in familial and sporadic Parkinson's disease in Russia. Eur. J. Neurol. 14, 413–417.
Imai, Y., Gehrke, S., Wang, H.-Q., Takahashi, R., Hasegawa, K., Oota, E., and Lu, B. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. Embo J. 27, 2432–2443.
Jackson, G.R., Wiedau-Pazos, M., Sang, T.-K., Wagle, N., Brown, C.A., Massachi, S., and Geschwind, D.H. (2002). Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34, 509–519.
Jacobs, K.M., Bhave, S.R., Ferraro, D.J., Jaboin, J.J., Hallahan, D.E., and Thotala, D. (2012). GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012, 930710–930711.
Johnson, B.N., Berger, A.K., Cortese, G.P., and LaVoie, M.J. (2012). The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc. Natl. Acad. Sci. U.S.a. 109, 6283–6288.
Junn, E., Taniguchi, H., Jeong, B.S., Zhao, X., Ichijo, H., and Mouradian, M.M. (2005). Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. U.S.a. 102, 9691–9696.
Kachergus, J., Mata, I.F., Hulihan, M., Taylor, J.P., Lincoln, S., Aasly, J., Gibson, J.M., Ross, O.A., Lynch, T., Wiley, J., et al. (2005). Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am. J. Hum. Genet. 76, 672–680.
Kanao, T., Venderova, K., Park, D.S., Unterman, T., Lu, B., and Imai, Y. (2010). Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Hum. Mol. Genet. 19, 3747–3758.
Kawakami, F., Shimada, N., Ohta, E., Kagiya, G., Kawashima, R., Maekawa, T., Maruyama, H., and Ichikawa, T. (2014). Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3β. Febs J. 281, 3–13.
Kawakami, F., Yabata, T., Ohta, E., Maekawa, T., Shimada, N., Suzuki, M., Maruyama, H., Ichikawa, T., and Obata, F. (2012). LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS ONE 7, e30834.
Klein, R.L., Lin, W.-L., Dickson, D.W., Lewis, J., Hutton, M., Duff, K., Meyer, E.M., and King, M.A. (2004). Rapid neurofibrillary tangle formation after localized gene transfer of mutated tau. Am. J. Pathol. 164, 347–353.
Koushika, S.P., Soller, M., and White, K. (2000). The neuron-enriched splicing pattern of Drosophila erect wing is dependent on the presence of ELAV protein. Mol. Cell. Biol. 20, 1836–1845.
Kwok, J.B.J., Teber, E.T., Loy, C., Hallupp, M., Nicholson, G., Mellick, G.D., Buchanan, D.D., Silburn, P.A., and Schofield, P.R. (2004). Tau haplotypes regulate transcription and are associated with Parkinson's disease. Ann. Neurol. 55, 329–334.
Lee, S.B., Kim, W., Lee, S., and Chung, J. (2007). Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 358, 534–539.
Lei, P., Ayton, S., Finkelstein, D.I., Adlard, P.A., Masters, C.L., and Bush, A.I. (2010). Tau protein: relevance to Parkinson's disease. Int. J. Biochem. Cell Biol. 42, 1775–1778.
Lewis, T.L., Courchet, J., and Polleux, F. (2013). Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. J. Cell Biol. 202, 837–848.
Li, T., Yang, D., Sushchky, S., Liu, Z., and Smith, W.W. (2011). Models for LRRK2-Linked Parkinsonism. Parkinsons Dis 2011, 942412–942416.
Li, W., and Lee, M.K. (2005). Antiapoptotic property of human alpha-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity. J. Neurochem. 93, 1542–1550.
Lin, C.-H., Tsai, P.-I., Wu, R.-M., and Chien, C.-T. (2010). LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ß. J. Neurosci. 30, 13138–13149.
Lisbin, M.J., Qiu, J., and White, K. (2001). The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA. Genes Dev. 15, 2546–2561.
Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T., et al. (2008). A Drosophila model for LRRK2-linked parkinsonism. Proc. Natl. Acad. Sci. U.S.a. 105, 2693–2698.
Loberg, R.D., Vesely, E., and Brosius, F.C. (2002). Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J. Biol. Chem. 277, 41667–41673.
Luk, C., Giovannoni, G., Williams, D.R., Lees, A.J., and de Silva, R. (2009). Development of a sensitive ELISA for quantification of three- and four-repeat tau isoforms in tauopathies. J. Neurosci. Methods 180, 34–42.
Luk, K.C., Kehm, V., Carroll, J., Zhang, B., O'Brien, P., Trojanowski, J.Q., and Lee, V.M.-Y. (2012). Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953.
Luzón-Toro, B., Rubio de la Torre, E., Delgado, A., Pérez-Tur, J., and Hilfiker, S. (2007). Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation. Hum. Mol. Genet. 16, 2031–2039.
Mandelkow, E.-M., and Mandelkow, E. (2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2, a006247–a006247.
Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274.
Maraganore, D.M., de Andrade, M., Lesnick, T.G., Strain, K.J., Farrer, M.J., Rocca, W.A., Pant, P.V.K., Frazer, K.A., Cox, D.R., and Ballinger, D.G. (2005). High-resolution whole-genome association study of Parkinson disease. Am. J. Hum. Genet. 77, 685–693.
Marín, I., van Egmond, W.N., and van Haastert, P.J.M. (2008). The Roco protein family: a functional perspective. Faseb J. 22, 3103–3110.
Martin, I., Kim, J.W., Dawson, V.L., and Dawson, T.M. (2014). LRRK2 pathobiology in Parkinson's disease. J. Neurochem. 131, 554–565.
Martin, L., Latypova, X., and Terro, F. (2011). Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 58, 458–471.
Mata, I.F., Wedemeyer, W.J., Farrer, M.J., Taylor, J.P., and Gallo, K.A. (2006). LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci. 29, 286–293.
Miyamoto, T., Stein, L., Thomas, R., Djukic, B., Taneja, P., Knox, J., Vossel, K., and Mucke, L. (2017). Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 12, 41.
Ohta, E., Kawakami, F., Kubo, M., and Obata, F. (2011). LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: impairment of the kinase activity by Parkinson's disease-associated mutations. FEBS Lett. 585, 2165–2170.
Ohta, E., Nihira, T., Uchino, A., Imaizumi, Y., Okada, Y., Akamatsu, W., Takahashi, K., Hayakawa, H., Nagai, M., Ohyama, M., et al. (2015). I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Hum. Mol. Genet. 24, 4879–4900.
Plowey, E.D., Cherra, S.J., Liu, Y.-J., and Chu, C.T. (2008). Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048–1056.
Qian, W., Shi, J., Yin, X., Iqbal, K., Grundke-Iqbal, I., Gong, C.-X., and Liu, F. (2010). PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J. Alzheimers Dis. 19, 1221–1229.
Ren, Y., Jiang, H., Yang, F., Nakaso, K., and Feng, J. (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J. Biol. Chem. 284, 4009–4017.
Rideout, H.J., and Stefanis, L. (2014). The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson's disease. Neurochem. Res. 39, 576–592.
Rodríguez-Martín, T., Cuchillo-Ibáñez, I., Noble, W., Nyenya, F., Anderton, B.H., and Hanger, D.P. (2013). Tau phosphorylation affects its axonal transport and degradation. Neurobiol. Aging 34, 2146–2157.
Rodríguez-Martín, T., Pooler, A.M., Lau, D.H.W., Mórotz, G.M., De Vos, K.J., Gilley, J., Coleman, M.P., and Hanger, D.P. (2016). Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiol. Dis. 85, 1–10.
Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerrière, A., Vital, A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26.
Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101.
Sheng, Z., Zhang, S., Bustos, D., Kleinheinz, T., Le Pichon, C.E., Dominguez, S.L., Solanoy, H.O., Drummond, J., Zhang, X., Ding, X., et al. (2012). Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med 4, 164ra161–164ra161.
Simón-Sánchez, J., Schulte, C., Bras, J.M., Sharma, M., Gibbs, J.R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S.W., Hernandez, D.G., et al. (2009). Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312.
Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841–841.
Skibinski, G., Nakamura, K., Cookson, M.R., and Finkbeiner, S. (2014). Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J. Neurosci. 34, 418–433.
Soller, M., and White, K. (2003). ELAV inhibits 3'-end processing to promote neural splicing of ewg pre-mRNA. Genes Dev. 17, 2526–2538.
Soller, M., and White, K. (2005). ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation. Mol. Cell. Biol. 25, 7580–7591.
Song, G., Ouyang, G., and Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59–71.
Song, L., De Sarno, P., and Jope, R.S. (2002). Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277, 44701–44708.
Steinhilb, M.L., Dias-Santagata, D., Mulkearns, E.E., Shulman, J.M., Biernat, J., Mandelkow, E.-M., and Feany, M.B. (2007). S/P and T/P phosphorylation is critical for tau neurotoxicity in Drosophila. J. Neurosci. Res. 85, 1271–1278.
Subramaniam, S., and Unsicker, K. (2010). ERK and cell death: ERK1/2 in neuronal death. Febs J. 277, 22–29.
Thomas, B., and Beal, M.F. (2007). Parkinson's disease. Hum. Mol. Genet. 16 Spec No. 2, R183–R194.
Tong, Y., Yamaguchi, H., Giaime, E., Boyle, S., Kopan, R., Kelleher, R.J., and Shen, J. (2010). Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. U.S.a. 107, 9879–9884.
Ujiie, S., Hatano, T., Kubo, S.-I., Imai, S., Sato, S., Uchihara, T., Yagishita, S., Hasegawa, K., Kowa, H., Sakai, F., et al. (2012). LRRK2 I2020T mutation is associated with tau pathology. Parkinsonism Relat. Disord. 18, 819–823.
van Swieten, J., and Spillantini, M.G. (2007). Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol. 17, 63–73.
Vanhaesebroeck, B., and Alessi, D.R. (2000). The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346 Pt 3, 561–576.
Varkey, J., Chen, P., Jemmerson, R., and Abrams, J.M. (1999). Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell Biol. 144, 701–710.
Violet, M., Delattre, L., Tardivel, M., Sultan, A., Chauderlier, A., Caillierez, R., Talahari, S., Nesslany, F., Lefebvre, B., Bonnefoy, E., et al. (2014). A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8, 84.
Wang, X., Yan, M.H., Fujioka, H., Liu, J., Wilson-Delfosse, A., Chen, S.G., Perry, G., Casadesus, G., and Zhu, X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 21, 1931–1944.
Watcharasit, P., Bijur, G.N., Zmijewski, J.W., Song, L., Zmijewska, A., Chen, X., Johnson, G.V.W., and Jope, R.S. (2002). Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc. Natl. Acad. Sci. U.S.a. 99, 7951–7955.
West, A.B., Moore, D.J., Biskup, S., Bugayenko, A., Smith, W.W., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2005). Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. U.S.a. 102, 16842–16847.
West, A.B., Moore, D.J., Choi, C., Andrabi, S.A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K.-L., Dawson, V.L., et al. (2007). Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223–232.
Wood, J.G., Mirra, S.S., Pollock, N.J., and Binder, L.I. (1986). Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. U.S.a. 83, 4040–4043.
Wu, T.-H., Lu, Y.-N., Chuang, C.-L., Wu, C.-L., Chiang, A.-S., Krantz, D.E., and Chang, H.-Y. (2013). Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathol. 125, 711–725.
Zabetian, C.P., Hutter, C.M., Factor, S.A., Nutt, J.G., Higgins, D.S., Griffith, A., Roberts, J.W., Leis, B.C., Kay, D.M., Yearout, D., et al. (2007). Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson's disease. Ann. Neurol. 62, 137–144.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *