帳號:guest(13.58.247.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高國維
作者(外文):Kao, Kuo Wei
論文名稱(中文):昆蟲天線體區域神經元在氣味辨別所扮演之角色:脈衝神經網路模型研究
論文名稱(外文):The Roles of Antenna Lobe Local Neurons of Insects in Odorant Discrimination: a Spiking Neural Network Model
指導教授(中文):羅中泉
指導教授(外文):Lo, Chung-Chuan
口試委員(中文):江安世
周雅惠
桑自剛
陳俊仲
口試委員(外文):Chiang, Ann-Shyn
Chou, Ya-Hui
Sang, Tzu-Kang
Chen, Chun-Chung
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:100080804
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:58
中文關鍵詞:天線體區域神經元神經網路模型嗅覺
外文關鍵詞:antennal lobelocal neuronsneural network modelolfactory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
嗅覺系統是演化過程中最古老,但被了解最少的感官系統,也是感官神經生物學中最具挑戰性的研究目標之一。儘管嗅覺系統的大量計算模型已經被提出了,但是它們並沒有考慮到生理學的多樣性,局部神經元的連結方式以及昆蟲觸角葉-昆蟲的主要嗅覺器官-中的一些最新發現。最近的研究表明,使用GABA拮抗劑可降低某些投射神經元(Projection Neurons)的反應,並且昆蟲對氣味脈衝頻率敏感,可用於定位氣味源。為了解釋這些觀察,我們提出了昆蟲觸角波的脈衝神經迴路模型。基於最近的解剖和生理學研究,我們在模型中包括了局部神經元(Local Neurons)的三種亞型 (sub-types) 以及突觸短期抑制(STD),並表明STD與局部神經元之間的相互作用導致了頻率敏感反應。我們進一步發現,投射神經元對GABA拮抗劑的意外反應是STD與突觸前抑制之間複雜相互作用的結果,這是增強對氣味刺激的敏感性所必需的。最後我們發現,如果嗅小球中局部神經元的神經支配遵循特定的模式,則氣味識別能力會得到改善。我們的研究結果表明,突觸前抑制(Pre-synaptic inhibition)和局部神經元的各種生理學和連結方式不是獨立的屬性,但它們的交互作用,在觸角葉的功能中發揮關鍵作用。
Studies have shown that input-output normalization is supposed to be caused by lateral inhibition(Olsen et al., 2010). However, by giving GABA antagonist or higher odor stimulus frequency in the same network can also induce output attenuation(Riffell et al., 2014). To solve the puzzle, I built a novel neural network model. Apart from applying already widely modeled local inter neuron sub-types, I included a new data based (Chou et al., 2010) sub-type that fires spontaneously and is suppressed by odor stimulus. The proposed model can explain the relationship between the function of local neuron innervation pattern and lateral inhibition, which lead to better odor discrimination in system scale. Further more we show that the interaction between short term depression and inter neuron inhibition can lead to odor frequency discrimination, which indicates distance discrimination.
Abstract……………………...…………………………………2
中文摘要……………………………………………………….3
Chapter 1 (introduction)…………………………………….….5
Chapter 2 (Material and Method)..…...…………...………...….8
Chapter 3 (Results) ....................................................................27
Chapter 4 (Discussion)…………………...…………...……….44
Reference …………………...………………………………....50
Supplementary data …………………...………………………54
Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic Depression and Cortical Gain Control. Science 275:221–224.
Assisi C, Stopfer M, Bazhenov M (2012) Excitatory Local Interneurons Enhance Tuning of Sensory Information. PLoS Comput Biol 8:e1002563.
Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI (2007) Sensory Processing in the Drosophila Antennal Lobe Increases the Reliability and Separability of Ensemble Odor Representations. Nat Neurosci 10:1474–1482.
Chou Y-H, Spletter ML, Yaksi E, Leong JCS, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13:439–449.
Cleland TA, Linster C (2012) On-Center/Inhibitory-Surround Decorrelation via Intraglomerular Inhibition in the Olfactory Bulb Glomerular Layer. Frontiers in Integrative Neuroscience 6 Available at: http://www.frontiersin.org/Journal/10.3389/fnint.2012.00005/full [Accessed May 26, 2014].
Cleland TA, Sethupathy P (2006) Non-topographical contrast enhancement in the olfactory bulb. BMC Neuroscience 7:7.
de Bruyne M, Clyne PJ, Carlson JR (1999a) Odor Coding in a Model Olfactory Organ: The Drosophila Maxillary Palp. J Neurosci 19:4520–4532.
de Bruyne M, Clyne PJ, Carlson JR (1999b) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532.
de Bruyne M, Foster K, Carlson JR (2001) Odor Coding in the Drosophila Antenna. Neuron 30:537–552.
Hallem EA, Carlson JR (2006) Coding of Odors by a Receptor Repertoire. 125:143–160.
Hempel CM, Hartman KH, Wang X-J, Turrigiano GG, Nelson SB (2000) Multiple Forms of Short-Term Plasticity at Excitatory Synapses in Rat Medial Prefrontal Cortex. Journal of Neurophysiology 83:3031–3041.
Huang J, Zhang W, Qiao W, Hu A, Wang Z (2010) Functional Connectivity and Selective Odor Responses of Excitatory Local Interneurons in Drosophila Antennal Lobe. Neuron 67:1021–1033.
Huston SJ, Stopfer M, Cassenaer S, Aldworth ZN, Laurent G (2015) Neural Encoding of Odors during Active Sampling and in Turbulent Plumes. Neuron 88:403–418.
Jefferis GS, Marin EC, Stocker RF, Luo L (2001) Target neuron prespecification in the olfactory map of Drosophila. Nature 414:204–208.
John Murlis, Joseph S. Elkinton, Ring T. Carde (1992) Odor Plumes and How Insects Use Them. Annual Review of Entomology 37:505–532.
Kazama H, Wilson RI (2008) Homeostatic Matching and Nonlinear Amplification at Identified Central Synapses. Neuron 58:401–413.
Kazama H, Wilson RI (2009) Origins of correlated activity in an olfactory circuit. Nat Neurosci 12:1136–1144.
Linster C, Cleland TA (2010) Decorrelation of odor representations via spike timing dependent plasticity. Front Comput Neurosci 4:157.
Nagel KI, Hong EJ, Wilson RI (2015) Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics. Nat Neurosci 18:56–65.
Nagel KI, Wilson RI (2016) Mechanisms Underlying Population Response Dynamics in Inhibitory Interneurons of the Drosophila Antennal Lobe. J Neurosci 36:4325–4338.
Ohliger-Frerking P, Wiebe SP, Staubli U, Frerking M (2003) GABAB Receptor-Mediated Presynaptic Inhibition Has History-Dependent Effects on Synaptic Transmission during Physiologically Relevant Spike Trains. J Neurosci 23:4809–4814.
Okada R, Awasaki T, Ito K (2009) Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. J Comp Neurol 514:74–91.
Olsen SR, Bhandawat V, Wilson RI (2007) Excitatory Interactions between Olfactory Processing Channels in the Drosophila Antennal Lobe. Cell 54:89–103.
Olsen SR, Bhandawat V, Wilson RI (2010) Divisive Normalization in Olfactory Population Codes. Neuron 66:287–299.
Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–960.
Park IJ, Hein AM, Bobkov YV, Reidenbach MA, Ache BW, Principe JC (2016) Neurally Encoding Time for Olfactory Navigation. PLoS Comput Biol 12:e1004682.
Park IM, Bobkov YV, Ache BW, Príncipe JC (2014) Intermittency coding in the primary olfactory system: a neural substrate for olfactory scene analysis. J Neurosci 34:941–952.
Raccuglia D, McCurdy LY, Demir M, Gorur-Shandilya S, Kunst M, Emonet T, Nitabach MN (2016) Presynaptic GABA receptors mediate temporal contrast enhancement in Drosophila olfactory sensory neurons and modulate odor-driven behavioral kinetics. eneuro:ENEURO.0080-16.2016.
Rangan AV (2012) Functional Roles for Synaptic-Depression within a Model of the Fly Antennal Lobe. PLoS Comput Biol 8:e1002622.
Reisenman CE, Dacks AM, Hildebrand JG (2011) Local interneuron diversity in the primary olfactory center of the moth Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:653–665.
Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B, Hinterwirth AJ, Kutz JN (2014) Flower discrimination by pollinators in a dynamic chemical environment. Science 344:1515–1518.
Seki Y, Rybak J, Wicher D, Sachse S, Hansson BS (2010) Physiological and Morphological Characterization of Local Interneurons in the Drosophila Antennal Lobe. Journal of Neurophysiology 104:1007–1019.
Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G (2007) Excitatory Local Circuits and Their Implications for Olfactory Processing in the Fly Antennal Lobe. Cell 128:601–612.
Shlizerman E, Riffell JA, Kutz JN (2014) Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe. Front Comput Neurosci 8:70.
Silbering AF, Galizia CG (2007) Processing of Odor Mixtures in the Drosophila Antennal Lobe Reveals both Global Inhibition and Glomerulus-Specific Interactions. J Neurosci 27:11966–11977.
Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34.
Sun H, Ma CL, Kelly JB, Wu SH (2006) GABAB receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neurosci Lett 399:151–156.
Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex. J Neurosci 17:7926–7940.
Wang JW (2012) Presynaptic modulation of early olfactory processing in Drosophila. Devel Neurobio 72:87–99.
Wang X-J (1999) Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons. Neuroscience 89:347–362.
Wilson RI (2013) Early Olfactory Processing in Drosophila: Mechanisms and Principles. Annual Review of Neuroscience 36:217–241.
Wu LG, Saggau P (1994) Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus. J Neurosci 14:645–654.
Wu L-G, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends in Neurosciences 20:204–212.
Yu Y, Migliore M, Hines ML, Shepherd GM (2014) Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition. J Neurosci 34:13701–13713.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *