|
Aduri, R., Psciuk, B.T., Saro, P., Taniga, H., Schlegel, H.B., and SantaLucia, J. (2007). AMBER force field parameters for the naturally occurring modified nucleosides in RNA. J. Chem. Theory Comput. 3, 1464–1475. Agback, P., Baumann, H., Knapp, S., Ladenstein, R., and Härd, T. (1998). Architecture of nonspecific protein--DNA interactions in the Sso7d--DNA complex. Nat. Struct. Mol. Biol. 5, 579. Agirrezabala, X., Schreiner, E., Trabuco, L.G., Lei, J., Ortiz-Meoz, R.F., Schulten, K., Green, R., and Frank, J. (2011). Structural insights into cognate versus near-cognate discrimination during decoding. EMBO J. 30, 1497–1507. Agirrezabala, X., Samatova, E., Klimova, M., Zamora, M., Gil-Carton, D., Rodnina, M. V, and Valle, M. (2017). Ribosome rearrangements at the onset of translational bypassing. Sci. Adv. 3, e1700147. Aida, M., and Nagata, C. (1986). An ab initio molecular orbital study on the stacking interaction between nucleic acid bases: Dependence on the sequence and relation to the conformation. Int. J. Quantum Chem. 29, 1253–1261. Amemiya, T., Koike, R., Kidera, A., and Ota, M. (2011). PSCDB: a database for protein structural change upon ligand binding. Nucleic Acids Res. 40, D554--D558. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and Ben-Tal, N. (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344--W350. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., and Bahar, I. (2001). Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515. Atkins, J.F., Loughran, G., Bhatt, P.R., Firth, A.E., and Baranov, P. V (2016). Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 44, 7007–7078. Babin, V., Roland, C., and Sagui, C. (2008). Adaptively biased molecular dynamics for free energy calculations. J. Chem. Phys. 128, 134101. Bahar, I., Atilgan, A.R., Demirel, M.C., and Erman, B. (1998). Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys. Rev. Lett. 80, 2733. Bahar, I., Lezon, T.R., Yang, L.-W., and Eyal, E. (2010). Global dynamics of proteins: bridging between structure and function. Annu. Rev. Biophys. 39, 23. de Bakker, P.I.W., HuÈnenberger, P.H., and McCammon, J.A. (1999). Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability1. J. Mol. Biol. 285, 1811–1830. Banerjee, A., Neiner, T., Tripp, P., and Albers, S.-V. (2013). Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex. FEBS J. 280, 6141–6149. Bassett, A., Cooper, S., Wu, C., and Travers, A. (2009). The folding and unfolding of eukaryotic chromatin. Curr. Opin. Genet. Dev. 19, 159–165. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242. Bernander, R., and Poplawski, A. (1997). Cell cycle characteristics of thermophilic archaea. J. Bacteriol. 179, 4963–4969. Bewley, C.A., Gronenborn, A.M., and Clore, G.M. (1998). Minor groove-binding architectural proteins: structure, function, and DNA recognition 1. Annu. Rev. Biophys. Biomol. Struct. 27, 105–131. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. gku340. Blaha, G., Stanley, R.E., and Steitz, T.A. (2009). Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science (80-. ). 325, 966–970. Bocharov, E. V, Sobol, A.G., Pavlov, K. V, Korzhnev, D.M., Jaravine, V.A., Gudkov, A.T., and Arseniev, A.S. (2004). From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J. Biol. Chem. 279, 17697–17706. Borovinskaya, M.A., Shoji, S., Holton, J.M., Fredrick, K., and Cate, J.H.D. (2007). A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 2, 545–552. Bowen, M.E., Weninger, K., Ernst, J., Chu, S., and Brunger, A.T. (2005). Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys. J. 89, 690–702. Brierley, I. (1995). Ribosomal frameshifting on viral RNAs. J. Gen. Virol. 76, 1885–1892. Brierley, I., Jenner, A.J., and Inglis, S.C. (1992). Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 227, 463–479. Brilot, A.F., Korostelev, A.A., Ermolenko, D.N., and Grigorieff, N. (2013). Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl. Acad. Sci. 110, 20994–20999. Brooks, B., and Karplus, M. (1983). Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. 80, 6571–6575. Budkevich, T. V, Giesebrecht, J., Behrmann, E., Loerke, J., Ramrath, D.J.F., Mielke, T., Ismer, J., Hildebrand, P.W., Tung, C.-S., Nierhaus, K.H., et al. (2014). Regulation of the mammalian elongation cycle by subunit rolling: a eukaryotic-specific ribosome rearrangement. Cell 158, 121–131. Bunch, H. (2016). Role of genome guardian proteins in transcriptional elongation. FEBS Lett. 590, 1064–1075. Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., and Woods, R.J. (2005). The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688. Case, D.A., Babin, V., Berryman, J., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham Iii, T.E., Darden, T.A., Duke, R.E., Gohlke, H., et al. (2014). Amber 14. Chan, J., Lin, H.-R., Takemura, K., Chang, K.-C., Chang, Y.-Y., Joti, Y., Kitao, A., and Yang, L.-W. (2018). An efficient timer and sizer of protein motions reveals the time scales of functional dynamics in the ribosome. BioRxiv. Chang, K.-C., Wen, J.-D., and Yang, L.-W. (2015). Functional importance of mobile ribosomal proteins. Biomed Res. Int. 2015. Chargaff, E., Lipshitz, R., and Green, C. (1952). Composition of the desoxypentose nucleic acids of four genera of sea-urchin. J Biol Chem 195, 155–160. Chen, C.-Y., Ko, T.-P., Lin, T.-W., Chou, C.-C., Chen, C.-J., and Wang, A.H.-J. (2005). Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d. Nucleic Acids Res. 33, 430–438. Chen, C., Esadze, A., Zandarashvili, L., Nguyen, D., Pettitt, B.M., and Iwahara, J. (2015). Dynamic equilibria of short-range electrostatic interactions at molecular interfaces of protein--DNA complexes. J. Phys. Chem. Lett. 6, 2733–2737. Chen, G., Chang, K.-Y., Chou, M.-Y., Bustamante, C., and Tinoco, I. (2009). Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of--1 ribosomal frameshifting. Proc. Natl. Acad. Sci. 106, 12706–12711. Chen, J., Petrov, A., Johansson, M., Tsai, A., O’Leary, S.E., and Puglisi, J.D. (2014). Dynamic pathways of-1 translational frameshifting. Nature 512, 328–332. Chen, Y.-T., Chang, K.-C., Hu, H.-T., Chen, Y.-L., Lin, Y.-H., Hsu, C.-F., Chang, C.-F., Chang, K.-Y., and Wen, J.-D. (2017). Coordination among tertiary base pairs results in an efficient frameshift-stimulating RNA pseudoknot. Nucleic Acids Res. 45, 6011–6022. Choli, T., Wittmann-Liebold, B., and Reinhardt, R. (1988). Microsequence analysis of DNA-binding proteins 7a, 7b, and 7e from the archaebacterium Sulfolobus acidocaldarius. J. Biol. Chem. 263, 7087–7093. Chou, M.-Y., and Chang, K.-Y. (2009). An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of- 1 ribosomal frameshifting. Nucleic Acids Res. gkp1107. Cornish, P. V, Ermolenko, D.N., Noller, H.F., and Ha, T. (2008). Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588. Cornish, P. V, Ermolenko, D.N., Staple, D.W., Hoang, L., Hickerson, R.P., Noller, H.F., and Ha, T. (2009). Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. 106, 2571–2576. Coulombe, B., and Burton, Z.F. (1999). DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms. Microbiol. Mol. Biol. Rev. 63, 457–478. Crooks, G.E., Hon, G., Chandonia, J.-M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190. Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092. Darve, E., and Pohorille, A. (2001). Calculating free energies using average force. J. Chem. Phys. 115, 9169–9183. Davydov, I.I., Wohlgemuth, I., Artamonova, I.I., Urlaub, H., Tonevitsky, A.G., and Rodnina, M. V (2013). Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes. Nat. Commun. 4, 1387. DeWilde, M., and Wittmann-Liebold, B. (1973). Localization of the amino-acid exchange in protein S5 from an Escherichia coli mutant resistant to spectinomycin. Mol. Gen. Genet. MGG 127, 273–276. Diaconu, M., Kothe, U., Schlünzen, F., Fischer, N., Harms, J.M., Tonevitsky, A.G., Stark, H., Rodnina, M. V, and Wahl, M.C. (2005). Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991–1004. Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numer. Math. 1, 269–271. Duggin, I.G., McCallum, S.A., and Bell, S.D. (2008). Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius. Proc. Natl. Acad. Sci. Essiz, S.G., and Coalson, R.D. (2009). Dynamic linear response theory for conformational relaxation of proteins. J. Phys. Chem. B 113, 10859–10869. Fei, J., Bronson, J.E., Hofman, J.M., Srinivas, R.L., Wiggins, C.H., and Gonzalez, R.L. (2009). Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl. Acad. Sci. 106, 15702–15707. Felsenfeld, G., and Groudine, M. (2003). Controlling the double helix. Nature 421, 448. Fischer, N., Konevega, A.L., Wintermeyer, W., Rodnina, M. V, and Stark, H. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333. Fischer, N., Neumann, P., Bock, L. V, Maracci, C., Wang, Z., Paleskava, A., Konevega, A.L., Schröder, G.F., Grubmüller, H., Ficner, R., et al. (2016). The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 540, 80. Flanagan, J.F., Namy, O., Brierley, I., and Gilbert, R.J.C. (2010). Direct observation of distinct A/P hybrid-state tRNAs in translocating ribosomes. Structure 18, 257–264. Flory, P., Volkenstein, M., and others (1969). Statistical mechanics of chain molecules. Flynn, R.L., and Zou, L. (2010). Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit. Rev. Biochem. Mol. Biol. 45, 266–275. Fredman, M.L., and Tarjan, R.E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615. Friedman, R.A., and Honig, B. (1995). A free energy analysis of nucleic acid base stacking in aqueous solution. Biophys. J. 69, 1528. Fu, H.-W., and Kuo, T.-Y. (2017). Methods for diagnosing and treating Helicobacter pylori infection. Gao, Y.-G., Su, S.-Y., Robinson, H., Padmanabhan, S., Lim, L., McCrary, B.S., Edmondson, S.P., Shriver, J.W., and Wang, A.H.-J. (1998). The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat. Struct. Mol. Biol. 5, 782–786. Gao, Y.-G., Selmer, M., Dunham, C.M., Weixlbaumer, A., Kelley, A.C., and Ramakrishnan, V. (2009). The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science (80-. ). 326, 694–699. Garcia, H.G., Grayson, P., Han, L., Inamdar, M., Kondev, J., Nelson, P.C., Phillips, R., Widom, J., and Wiggins, P.A. (2007). Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolym. Orig. Res. Biomol. 85, 115–130. Grogan, D.W. (1996). Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J. Bacteriol. 178, 3207–3211. Guagliardi, A., Napoli, A., Rossi, M., and Ciaramella, M. (1997). Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein1. J. Mol. Biol. 267, 841–848. Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723. Haliloglu, T., Bahar, I., and Erman, B. (1997). Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79, 3090. Hopkins, C.W., Le Grand, S., Walker, R.C., and Roitberg, A.E. (2015). Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864–1874. Hu, H.-T., Cho, C.-P., Lin, Y.-H., and Chang, K.-Y. (2015). A general strategy to inhibiting viral- 1 frameshifting based on upstream attenuation duplex formation. Nucleic Acids Res. gkv1307. Huang, J., and MacKerell, A.D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145. Husain, I., Griffith, J., and Sancar, A. (1988). Thymine dimers bend DNA. Proc. Natl. Acad. Sci. 85, 2558–2562. Ikeguchi, M., Ueno, J., Sato, M., and Kidera, A. (2005). Protein structural change upon ligand binding: linear response theory. Phys. Rev. Lett. 94, 78102. Ilag, L.L., Videler, H., McKay, A.R., Sobott, F., Fucini, P., Nierhaus, K.H., and Robinson, C. V (2005). Heptameric (L12) 6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc. Natl. Acad. Sci. U. S. A. 102, 8192–8197. Ishii, Y., Yoshida, T., Funatsu, T., Wazawa, T., and Yanagida, T. (1999). Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem. Phys. 247, 163–173. Ivani, I., Dans, P.D., Noy, A., Pérez, A., Faustino, I., Hospital, A., Walther, J., Andrio, P., Goñi, R., Balaceanu, A., et al. (2016). Parmbsc1: a refined force field for DNA simulations. Nat. Methods 13, 55. Jacob, F. (1977). Evolution and tinkering. Science (80-. ). 196, 1161–1166. Jenner, L.B., Demeshkina, N., Yusupova, G., and Yusupov, M. (2010). Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560. Joung, I.S., and Cheatham III, T.E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041. Kim, J., Klooster, S., and Shapiro, D.J. (1995). Intrinsically bent DNA in a eukaryotic transcription factor recognition sequence potentiates transcription activation. J. Biol. Chem. 270, 1282–1288. Kim, K.K., Hung, L.-W., Yokota, H., Kim, R., and Kim, S.-H. (1998). Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 Åresolution. Proc. Natl. Acad. Sci. 95, 10419–10424. Kim, N.-K., Zhang, Q., Zhou, J., Theimer, C.A., Peterson, R.D., and Feigon, J. (2008). Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA. J. Mol. Biol. 384, 1249–1261. Kirthi, N., Roy-Chaudhuri, B., Kelley, T., and Culver, G.M. (2006). A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. Rna. Ko, T.-P., Chu, H.-M., Chen, C.-Y., Chou, C.-C., and Wang, A.-J. (2004). Structures of the hyperthermophilic chromosomal protein Sac7d in complex with DNA decamers. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1381–1387. Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., et al. (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33, 889–897. Kondrashov, D.A., Cui, Q., and Phillips, G.N. (2006). Optimization and evaluation of a coarse-grained model of protein motion using x-ray crystal data. Biophys. J. 91, 2760–2767. Korostelev, A., Trakhanov, S., Laurberg, M., and Noller, H.F. (2006). Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077. Kurkcuoglu, O., Doruker, P., Sen, T.Z., Kloczkowski, A., and Jernigan, R.L. (2008). The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Phys. Biol. 5, 46005. Larsen, B., Gesteland, R.F., and Atkins, J.F. (1997). Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50% 1. J. Mol. Biol. 271, 47–60. Li, D.-W., and Brüschweiler, R. (2009). All-atom contact model for understanding protein dynamics from crystallographic B-factors. Biophys. J. 96, 3074–3081. Li, H., Chang, Y.-Y., Lee, J.Y., Bahar, I., and Yang, L.-W. (2017). DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Res. 45, W374--W380. Loncharich, R.J., Brooks, B.R., and Pastor, R.W. (1992). Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Biopolym. Orig. Res. Biomol. 32, 523–535. Love, J.J., Li, X., Case, D.A., Giese, K., Grosschedl, R., and Wright, P.E. (1995). Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791. Lu, X.-J., and Olson, W.K. (2003). 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121. Lu, M., Poon, B., and Ma, J. (2006). A new method for coarse-grained elastic normal-mode analysis. J. Chem. Theory Comput. 2, 464–471. Luke, K.A., Higgins, C.L., and Wittung-Stafshede, P. (2007). Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J. 274, 4023–4033. Macke, T.J., and Case, D.A. (1998). Modeling unusual nucleic acid structures. (ACS Publications), p. Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., and Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713. Maréchal, A., and Zou, L. (2015). RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 25, 9. Marshall, R.A., Dorywalska, M., and Puglisi, J.D. (2008). Irreversible chemical steps control intersubunit dynamics during translation. Proc. Natl. Acad. Sci. 105, 15364–15369. Matsumoto, A., and Ishida, H. (2009). Global conformational changes of ribosome observed by normal mode fitting for 3D Cryo-EM structures. Structure 17, 1605–1613. Melnikov, S., Ben-Shem, A., de Loubresse, N.G., Jenner, L., Yusupova, G., and Yusupov, M. (2012). One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19, 560–567. Ming, D., and Wall, M.E. (2005). Allostery in a coarse-grained model of protein dynamics. Phys. Rev. Lett. 95, 198103. Mohan, S., Donohue, J.P., and Noller, H.F. (2014). Molecular mechanics of 30S subunit head rotation. Proc. Natl. Acad. Sci. 111, 13325–13330. Mukherjee, S., and Zhang, Y. (2009). MM-align: a quick algorithm for aligning multiple-chain protein complex structures using iterative dynamic programming. Nucleic Acids Res. 37, e83--e83. Murphy IV, F. V, and Churchill, M.E.A. (2000). Nonsequence-specific DNA recognition: a structural perspective. Structure 8, R83--R89. Nakagawa, H., Yonetani, Y., Nakajima, K., Ohira-Kawamura, S., Kikuchi, T., Inamura, Y., Kataoka, M., and Kono, H. (2014). Local dynamics coupled to hydration water determines DNA-sequence-dependent deformability. Phys. Rev. E 90, 22723. Namy, O., Moran, S.J., Stuart, D.I., Gilbert, R.J.C., and Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247. Napthine, S., Liphardt, J., Bloys, A., Routledge, S., and Brierley, I. (1999). The role of RNA pseudoknot stem 1 length in the promotion of efficient- 1 ribosomal frameshifting. J. Mol. Biol. 288, 305–320. Nguyen, C.N., Kurtzman Young, T., and Gilson, M.K. (2012). Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit [7] uril. J. Chem. Phys. 137, 44101. Nguyen, H., Roe, D.R., and Simmerling, C. (2013). Improved generalized born solvent model parameters for protein simulations. J. Chem. Theory Comput. 9, 2020–2034. Noeske, J., Wasserman, M.R., Terry, D.S., Altman, R.B., Blanchard, S.C., and Cate, J.H.D. (2015). High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 22, 336–341. Pabo, C.O., and Sauer, R.T. (1992). Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053–1095. Parker, J. (1989). Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53, 273. Pastor, R.W., Brooks, B.R., and Szabo, A. (1988). An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys. 65, 1409–1419. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., Ferguson, D., Seibel, G., and Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41. Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham III, T.E., Laughton, C.A., and Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: improving the description of $α$/$γ$ conformers. Biophys. J. 92, 3817–3829. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802. Protozanova, E., Yakovchuk, P., and Frank-Kamenetskii, M.D. (2004). Stacked--unstacked equilibrium at the nick site of DNA. J. Mol. Biol. 342, 775–785. Qin, P., Yu, D., Zuo, X., and Cornish, P. V (2014). Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep. Qu, X., Wen, J.-D., Lancaster, L., Noller, H.F., Bustamante, C., and Tinoco, I. (2011). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118–121. Razvi, A., and Scholtz, J.M. (2006). Lessons in stability from thermophilic proteins. Protein Sci. 15, 1569–1578. Robinson, H., Gao, Y.-G., McCrary, B.S., Edmondson, S.P., Shriver, J.W., and Wang, A.H.-J. (1998). The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392, 202–205. Roe, D.R., and Cheatham III, T.E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095. Rohs, R., West, S.M., Sosinsky, A., Liu, P., Mann, R.S., and Honig, B. (2009). The role of DNA shape in protein--DNA recognition. Nature 461, 1248–1253. Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738. Salomon-Ferrer, R., Case, D. a., and Walker, R.C. (2013a). An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 198–210. Salomon-Ferrer, R., Götz, A.W., Poole, D., Le Grand, S., and Walker, R.C. (2013b). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888. Sampathi, S., and Chai, W. (2011). Telomere replication: poised but puzzling. J. Cell. Mol. Med. 15, 3–13. Sanbonmatsu, K.Y. (2012). Computational studies of molecular machines: the ribosome. Curr. Opin. Struct. Biol. 22, 168–174. Sandmann, A., and Sticht, H. (2018). Probing the role of intercalating protein sidechains for kink formation in DNA. PLoS One 13, e0192605. Schmeing, T.M., Voorhees, R.M., Kelley, A.C., Gao, Y.-G., Murphy, F. V, Weir, J.R., and Ramakrishnan, V. (2009). The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science (80-. ). 326, 688–694. Schoepp-Cothenet, B., Schütz, M., Baymann, F., Brugna, M., Nitschke, W., Myllykallio, H., and Schmidt, C. (2001). The membrane-extrinsic domain of cytochrome b 558/566 from the Archaeon Sulfolobus acidocaldarius performs pivoting movements with respect to the membrane surface. FEBS Lett. 487, 372–376. Selmer, M., Dunham, C.M., Murphy, F. V, Weixlbaumer, A., Petry, S., Kelley, A.C., Weir, J.R., and Ramakrishnan, V. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA. Science (80-. ). 313, 1935–1942. Seno, Y., and Gō, N. (1990a). Deoxymyoglobin studied by the conformational normal mode analysis: II. The conformational change upon oxygenation. J. Mol. Biol. 216, 111–126. Seno, Y., and Gō, N. (1990b). Deoxymyoglobin studied by the conformational normal mode analysis: I. Dynamics of globin and the heme-globin interaction. J. Mol. Biol. 216, 95–109. Sinnokrot, M.O., Valeev, E.F., and Sherrill, C.D. (2002). Estimates of the ab initio limit for $π$-$π$ interactions: The benzene dimer. J. Am. Chem. Soc. 124, 10887–10893. Slootstra, J.W., Kuperus, D., Plückthun, A., and Meloen, R.H. (1997). Identification of new tag sequences with differential and selective recognition properties for the anti-FLAG monoclonal antibodies M1, M2 and M5. Mol. Divers. 2, 156–164. Smith, S.B., Cui, Y., and Bustamante, C. (1996). Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science (80-. ). 271, 795–799. Stella, S., Cascio, D., and Johnson, R.C. (2010). The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. 24, 814–826. Su, S., Gao, Y.-G., Robinson, H., Liaw, Y.-C., Edmondson, S.P., Shriver, J.W., and Wang, A.H.-J. (2000). Crystal structures of the chromosomal proteins Sso7d/Sac7d bound to DNA containing TG mismatched base-pairs. J. Mol. Biol. 303, 395–403. Takyar, S., Hickerson, R.P., and Noller, H.F. (2005). mRNA helicase activity of the ribosome. Cell 120, 49–58. Tama, F., Valle, M., Frank, J., and Brooks, C.L. (2003). Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci. 100, 9319–9323. Theimer, C.A., Blois, C.A., and Feigon, J. (2005). Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682. Tolstorukov, M.Y., Jernigan, R.L., and Zhurkin, V.B. (2004). Protein--DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J. Mol. Biol. 337, 65–76. Tolstorukov, M.Y., Colasanti, A. V, McCandlish, D.M., Olson, W.K., and Zhurkin, V.B. (2007). A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. J. Mol. Biol. 371, 725–738. Tourigny, D.S., Fernández, I.S., Kelley, A.C., and Ramakrishnan, V. (2013). Elongation factor G bound to the ribosome in an intermediate state of translocation. Science (80-. ). 340, 1235490. Trabuco, L.G., Schreiner, E., Eargle, J., Cornish, P., Ha, T., Luthey-Schulten, Z., and Schulten, K. (2010). The role of L1 stalk--tRNA interaction in the ribosome elongation cycle. J. Mol. Biol. 402, 741–760. Travers, A. (2005). DNA dynamics: bubble ‘n’flip for DNA cyclisation? Curr. Biol. 15, R377--R379. Tsuchihashi, Z., and Brown, P.O. (1992). Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA (Lys) and an AAG lysine codon. Genes Dev. 6, 511–519. Wang, C.-I., and Taylor, J.-S. (1991). Site-specific effect of thymine dimer formation on dAn. dTn tract bending and its biological implications. Proc. Natl. Acad. Sci. 88, 9072–9076. Wang, F., and Landau, D.P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050. Wang, J., Hou, T., and Xu, X. (2006). Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr. Comput. Aided. Drug Des. 2, 287–306. Wang, Y., Rader, A.J., Bahar, I., and Jernigan, R.L. (2004). Global ribosome motions revealed with elastic network model. J. Struct. Biol. 147, 302–314. Weixlbaumer, A., Jin, H., Neubauer, C., Voorhees, R.M., Petry, S., Kelley, A.C., and Ramakrishnan, V. (2008). Insights into translational termination from the structure of RF2 bound to the ribosome. Science (80-. ). 322, 953–956. Werner, M.H., Gronenborn, A.M., and Clore, G.M. (1996). Intercalation, DNA kinking, and the control of transcription. Science (80-. ). 271, 778–784. Wriggers, W. (2010). Using Situs for the integration of multi-resolution structures. Biophys. Rev. 2, 21–27. Xu, Z., Cetin, B., Anger, M., Cho, U.S., Helmhart, W., Nasmyth, K., and Xu, W. (2009). Structure and function of the PP2A-shugoshin interaction. Mol. Cell 35, 426–441. Yamamoto, H., Unbehaun, A., Loerke, J., Behrmann, E., Collier, M., Bürger, J., Mielke, T., and Spahn, C.M.T. (2014). Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat. Struct. Mol. Biol. 21, 721–727. Yamano, T., Nishimasu, H., Zetsche, B., Hirano, H., Slaymaker, I.M., Li, Y., Fedorova, I., Nakane, T., Makarova, K.S., Koonin, E. V, et al. (2016). Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962. Yan, S., Wen, J.-D., Bustamante, C., and Tinoco, I. (2015). Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 160, 870–881. Yang, L.-W. (2011). Models with energy penalty on interresidue rotation address insufficiencies of conventional elastic network models. Biophys. J. 100, 1784–1793. Yang, L.-W., Kitao, A., Huang, B.-C., and Gō, N. (2014). Ligand-Induced Protein Responses and Mechanical Signal Propagation Described by Linear Response Theories. Biophys. J. 107, 1415–1425. Yang, L.-W., Cheng, J.-W., Li, H.-C., Tsai, C.-Y., and Hui-Yuan, Y.U. (2017). Evaluation system for the efficacy of antimicrobial peptides and the use thereof. Yang, L., Song, G., and Jernigan, R.L. (2009). Comparisons of experimental and computed protein anisotropic temperature factors. Proteins Struct. Funct. Bioinforma. 76, 164–175. Yonetani, Y., and Kono, H. (2012). What determines water-bridge lifetimes at the surface of DNA? Insight from systematic molecular dynamics analysis of water kinetics for various DNA sequences. Biophys. Chem. 160, 54–61. Yonetani, Y., and Kono, H. (2013). Dissociation free-energy profiles of specific and nonspecific DNA--protein complexes. J. Phys. Chem. B 117, 7535–7545. Yonetani, Y., Maruyama, Y., Hirata, F., and Kono, H. (2008). Comparison of DNA hydration patterns obtained using two distinct computational methods, molecular dynamics simulation and three-dimensional reference interaction site model theory. J. Chem. Phys. 128, 05B608. Yu, H.-Y., Huang, K.-C., Yip, B.-S., Tu, C.-H., Chen, H.-L., Cheng, H.-T., and Cheng, J.-W. (2010). Rational Design of Tryptophan-Rich Antimicrobial Peptides with Enhanced Antimicrobial Activities and Specificities. Chembiochem 11, 2273–2282. Yuann, J.-M.P., Tseng, W.-H., Lin, H.-Y., and Hou, M.-H. (2012). The effects of loop size on Sac7d-hairpin DNA interactions. Biochim. Biophys. Acta (BBA)-Proteins Proteomics 1824, 1009–1015. Yusupova, G., Jenner, L., Rees, B., Moras, D., and Yusupov, M. (2006). Structural basis for messenger RNA movement on the ribosome. Nature 444, 391–394. Zhang, J., Pan, X., Yan, K., Sun, S., Gao, N., and Sui, S.-F. (2015). Mechanisms of ribosome stalling by SecM at multiple elongation steps. Elife 4, e09684. Zhang, Y., Hong, S., Ruangprasert, A., Skiniotis, G., and Dunham, C.M. (2018). Alternative Mode of E-Site tRNA Binding in the Presence of a Downstream mRNA Stem Loop at the Entrance Channel. Structure 26, 437–445. Zhang, Z., Miller, W., Schäffer, A.A., Madden, T.L., Lipman, D.J., Koonin, E. V, and Altschul, S.F. (1998). Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res. 26, 3986–3990. Zimmermann, M.T., Jia, K., and Jernigan, R.L. (2016). Ribosome mechanics informs about mechanism. J. Mol. Biol. 428, 802–810.
|