|
[1] C. Wang and P. Sahay, "Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits," Sensors 9, 8230-8262 (2009).
[2] S. Schilt, L. Thevenaz, M. Niklès, L. Emmenegger, C. Hüglin, " Ammonia monitoring at trace level using photoacoustic spectroscopy," Spectrochim, Acta A 60, 3259-3268 (2004).
[3] R. Hibst, U. Keller, "Experimental studies of the application of the Er:YAG laser on dental hard substances, I. Measurements of the ablation rate," Lasers Surg Med 9, 338-344 (1989).
[4] D. M. Bubb, J. S. Horwitz, R. A. McGill, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, Jr., and B. Toftmann, “Resonant infrared pulsed-laser deposition of a sorbent chemoselective polymer,” Appl. Phys. Lett. 79, 2847-2849 (2001).
[5] R. Martini and E. A. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber. Commun. Rep. 2, 279-292 (2005).
[6] A. Sijan, “Development of military lasers for optical countermeasures in the Mid-IR,” Proc. SPIE 7483, 748304 (2009).
[7] T. Harashima, J. Kinoshita, Y. Kimura, A. Brugnera, F. Zanin, J. D. Peccora, K. Matsumoto, "Morphological comparative study on ablation of dental hard tissues at cavity preparation by Er:YAG and Er,Cr:YSGG lasers," Photomed Laser Surg. 23, 52-55 (2005)
[8] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn," Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers," Science 336, 1287 (2012).
[9] F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy” in Solid-State Mid-Infrared Laser Sources, Topics in Appl. Phys. 89, I. T. Sorokina, K. L. Vodopyanov (eds) (Spinger-Verlag, Berlin, 2003), pp. 445-516
[10] L. Dong, Y. Yu, C. Li, S. So, and F. K. Tittel, “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell,” Opt. Express 23, 19821–19830 (2015).
[11] J. Nwaboh, S. Persijn, K. Heinrich, M. Sowa, and O. Werhahn, "QCLAS and CRDS based CO quantification as aimed at in breath measurements," Int. J. Spectros., 2012, 894841 (2012).
[12] W. Ye, C. Zheng, F. K. Tittel, N. P. Sanchez, A. K. Gluszek, A. J. Hudzikowski, M. Lou, L. Dong, R. J. Griffin, "A compact mid-infrared dual-gas CH4/C2H6 sensor using a single interband cascade laser and custom electronics,’’ Proc. SPIE 10111, Quantum Sensing and Nano Electronics and Photonics XIV, 1011134, January 27, (2017)
[13] H. Waechter and M. W. Sigrist, “Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection,” Appl. Phys. B 87, 539-546 (2007).
[14] C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533-1601 (2001).
[15] A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, and H. Thienpont, “Continuous-wave broadly tunable Cr2+:ZnSe laser pumped by a thulium fiber laser,” Opt. Commun. 268, 115-120 (2006).
[16] D. Richter, A. Fried, B. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B. 75, 281-288 (2002).
[17] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched 1.064 micron-pumped optical parametric oscillator in bulk periodically poled LiNbO3”, Opt. Lett. 20, 52-54 (1995).
[18] M. Ebrahimzadeh, G. A. Turnbull, T. J. Edwards, D. J. M. Stothard, I. D. Lindsday, M. H. Dunn, "Intracavity continuous-wave singly resonant optical parametric oscillators," J. Opt. Soc. Am. B 16, 1499-1511 (1999).
[19] J. Y. Lai, C. W. Hsu, E. C. Liu, Y. C. Chen, D. Y. Wu, M. H. Chou, and S. D. Yang, “A 3.5 μm continuous wave laser pointer,” Conference on Lasers & Electro Optics, San Jose, California, USA, June 5-10, 2016.
[20] J. Y. Lai, H. T. Guo, Y. C. Chen, C. W. Hsu, D. Y. Wu, M. H. Chou, and S. D. Yang, "Single-frequency Mod-hop Free Tunable 3μm Laser Pumped by a 2W Diode for Isotopic Gas Sensing," Conference on Lasers & Electro Optics, San Jose, California, USA, May 13-18, 2018.
[21] R. F. Kazarinov and R. A. Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).
[22] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Quantum cascade laser, Science 264, 553-556 (1994).
[23] P. Figueiredo, M. Suttinger, R. Go, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Progress in high-power continuous wave quantum cascade lasers,” Appl. Opt. 56, H15-H23 (2017).
[24] M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, " Quantum cascade lasers: 20 years of challenges," Opt. Express 23, 5167 (2015).
[25] M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices,” Appl. Opt. 56, H30–H44 (2017).
[26] J. M. Wolf, S. Riedi, M. J. Süess, M. Beck, and J. Faist, "3.36 µm single-mode quantum cascade laser with a dissipation below 250 mW," Opt. Express 24, 662-671 (2016)
[27] J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[28] R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum cascade lasers,” Appl. Phys. Lett. 84, 1659 (2004).
[29] R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[30] G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[31] L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron 32, 885-895 (1996).
[32] S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21, 1601719 (2015).
[33] E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” Advanced Solid State Photonics, San Diego, CA, USA 2010, San Diego, USA, January 31- February 3 (2010).
[34] S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solidstate mid-IR laser technology,” Laser Tech. J., 13, 1-5 (2016).
[35] P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197-202 (1992).
[36] S. Guha, J. O. Barnes, and L. P. Gonzalez, " Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate,", Opt. Lett. 39, 5018 (2014).
[37] U. Bader, T. Mattern, T. Bauer, J. Bartschke, M. Rahm, A. Borsutzky, and R. Wallenstein, "Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate," Opt. Commun. 217, 375-380 (2003).
[38] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, " Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591 (1996).
[39] F. G. Colville, M. J. Padgett, and M. H. Dunn, " Continuous‐wave, dual‐cavity, doubly resonant, optical parametric oscillator," Appl. Phys. Lett. 64, 1490 (1994).
[40] R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, “Long-term stable operation and absolute frequency stabilization of a doubly resonant parametric oscillator,” Appl. Phys. B 66, 733-39 (1998).
[41] J. U. F¨urst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, " Low-threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator," Phys. Rev. Lett. 104, 153901 (2010).
[42] G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, M. H. Dunn: Extended mode-hop-free tuning using a dual-cavity, pump-enhanced optical parametric oscillator," Opt. Lett. 25, 341–343 (2000).
[43] M. Ebrahimzadeh, G. A. Turnbull, T. J. Edwards, D. J. M. Stothard, I. D. Lindsday, M. H. Dunn, "Intracavity continuous-wave singly resonant optical parametric oscillators," J. Opt. Soc. Am. B 16, 1499-1511 (1999).
[44] W. K. Chang, Y. H. Chen, H. H. Chang, J. W. Chang, C. Y. Chen, Y. Y. Lin, Y. C. Huang, and S. T. Lin, "Two-dimensional PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 laser," Opt. Express 19, 23643-23651 (2011).
[45] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
[46] J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052-2057 (1990).
[47] M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, " Singly resonant cw OPO with simple wavelength tuning," Opt. Express 16, 11141 (2008).
[48] O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B 91, 343 (2008).
[49] J. Breguet,J. P. Pellaux, and N. Gisin, "Photoacoustic detection of trace gases with an optical microphone," Sensors Actuators A 1, 29-35 (1995).
[50] A.A. Kosterev, F.K. Tittel, D. Serebryakov, A.L. Malinovsky, I. Morozov, " Applications of Quartz Tuning Forks in Spectroscopic Gas Sensing," Rev. Sci. Instrum. 76, 1 (2005).
[51] V. Koskinen, J. Fonsen, K. Roth, J. Kauppinen, " Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source," Appl. Phys. B 86, 451 (2007).
|