帳號:guest(3.128.95.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳宗庭
作者(外文):Wu, Tsung-Ting
論文名稱(中文):矽材料分離式吸收-電荷-倍增之累增崩潰蕭特基光二極體應用於近紅外光偵測
論文名稱(外文):Si Separate, Absorption, Charge and Multiplication Schottky Avalanche Photodiodes Applied in NIR Photodetection
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):林聖迪
黃承彬
口試委員(外文):Lin, Sheng-Di
Huang, Chen-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066540
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:熱載子注入表面電漿近紅外光偵測器矽光偵測器雪崩光增益二極體分離式雪崩光二極體
外文關鍵詞:Hot Carrier InjectionSurface plasmon modeNIR PhotodetectorsSi PhotodetectorAvalanche PhotodiodesSACM Avalanche Photodiodes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:218
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
論文提出由金屬表面電漿模態(surface plasmon mode)結構增強熱載子(hot carrier)注入矽材料的蕭特基(Schottky)雪崩光增益二極體(avalanche photodiodes),由於其元件設計理念與分離式-吸收-電荷-倍增之累增崩潰光二極體(separate absorption-charge-multiplication avalanche photodiodes, SACM APD)的概念十分相同,為此我們也稱其為Si SACM Schottky avalanche photodiodes.此設計理念藉用表面電漿模態對其光學響應將共振子轉換為熱載子,並將其萃取出注入至矽光二極體內,再經有矽光二極體操作在雪崩效應(avalanche effect)條件下,將熱載子訊號放大,以實現矽材料光偵測器對於近紅外偵測的可能性.而對於熱載子極低的光轉電響應度(Primary Responsivity A/W)~100uA/W,藉由高增益的條件下,達到在不同近紅外光波長下放大到44.25mA/W (1260nm)與 32.1mA/W(1550nm)。我們成功實現過去沒有人提出的方式,來實現矽材料光偵測器對近紅外光偵測可能從未有過的最高響應度.
This thesis proposes using surface plasma resonance (SPR) to enhance hot carrier generation and injection into Si Schottky avalanche photodiodes for near IR detection. These photodiodes are also called “Si SACM Schottky avalanche photodiodes”, owing to a similar device concept of separate absorption-charge-multiplication avalanche photodiodes, SACM APDs, which is commonly seen in semiconductor detectors. With this idea, the optically excited surface plasma turn into hot carriers through the SPR mode. Then, the hot carriers are injected into a Si PIN photodiode and initiate a multiplied photocurrent via the avalanche effect. This process enables the possibility of implementing a Si photodetector for detecting light extended into the NIR spectrum. According to the experimental results, the originally extremely low photoresponse of photogenerated hot carrier injection (~100uA/W) can be amplified to 44.25mA/W (1260nm) and 32.1mA/W (1550nm) in different NIR bands under the high-gain operation. In summary, we presented a Si photodetector which can achieve a record high response in NIR.
目錄
摘要.....................................I
Abstract ...............................II
致謝................................... III
目錄....................................IV
第一章
緒論
1.1前言..................................1
1.2研究動機.................................2
1.3論文架構.................................8
第二章 理論背景
2.1表面電漿增強熱載子注入機制
2.1-1表面電漿基本原理........................9
2.1-2偏振方向與表面電漿模態之關係........11
2.1-3激發表面電漿波..................13
2.1-4 表面電漿增強熱載子注入機制原理.......16
2.2光偵測器
2.2-1 傳統光偵測器與基本原理.............20
2.2-2 金屬-半導體接觸...................22
2.2-3 PIN光偵測器.......................24
2.2-4 雪崩光偵測器......................28
2.2-5 分離式吸收-電荷-倍增之雪崩光偵測器..32
第三章 元件模擬與設計
   3.1 前言.............................33
3.2 金光柵FDTD光學模擬設計.........................................34
3.3 元件金屬半導體接面能障大小設計...........36
3.4 元件暗電流特性模擬
3.4-1 前言.................................39
3.4-2 電荷層濃度對元件暗電流特性影響.........39
3.4-3 能障穿隧與降低效應對元件暗電流特性影響..43
3.4-4 雪崩效應對元件暗電流特性影響.44
3.4-5 結論.......................48
第四章 元件製作
4.1元件製作流程圖與流程說明...................51
第五章 元件量測與分析
5.1前言.....................................52
5.2光暗電流量測分析....................52
5.3光轉電響應頻譜量測分析.....................55
5.4元件暗電流特性分析..................59
5.5元件高增益光轉電響應度量測.................61
5.6量測結論分析..............................63

第六章 結論與未來展望
6.1結論.....................................64
6.2未來展望..................................66
參考文獻........................,............67
參考文獻
[1] S. M. Sze, Kwok K. Ng, “Physics of Semiconductor Devices.” Third Edition, WILEY-INTERSCIENCE, 2007.
[2] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003.
[3] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, 2004.
[4] A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, "Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings," Applied Physics Letters, vol. 97, p. 261908, 2010.
[5] E. Kretschmann and H. Raether, "Notizen: radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968.
[6] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[7] Mark W. Knight, Heidar Sobhani, Peter Nordlander and Naomi J. Halas, "Photodetection with Active Optical Antennas, " Science, vol.332, 2011.
[8] Ali Sobhani, Mark W. Knight, Yumin Wang, Bob Zheng, Nicholas S. King, Lisa V. Brown, Zheyu Fang, Peter Nordlander and Naomi J. Halas, "Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device," Nature Communications, 2013.
[9] B Keng-Te Lin, Hsuen-Li Chen, Yu-Sheng Lai and Chen-Chieh Yu, "Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths," Nature Communications, 2014.
[10] Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir and Uriel Levy, "Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band," Optics Express, vol. 20, pp. 28594-28602, 2012.
[11] Mohammad Alavirad, Anthony Olivieri, Langis Roy and Pierre Berini, "High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors," Optics Express, vol. 24, pp. 22544-22554, 2016.
[12] Liu, J.-M., "Photonic Devices," Cambridge University Press, 2005.
[13] Sze, S.M. and G. Gibbons, "Avalanche Breakdown Voltages of Abrupt and Linearly Graded p-n Junctions in Ge, Si, GaAs, and GaP, " AppliedPhysics Letters, 1966.
[14] 陳谷泓, “PIN鍺光偵測器及雪崩增益之研究”, 清華大學光電所。
[15] 林家鵬, “光柵結構之表面電漿柯爾磁光增強效應整合微流體晶片系統應用於生醫感測”, 清華大學光電所。
[16] 謝佳倩, “具濾波功能之近外光鍺光偵測器”, 清華大學光電所。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *