帳號:guest(3.144.118.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):談得聖
作者(外文):Tan, Te-Sheng
論文名稱(中文):在小盤天秤上的硬幣稱重問題之準確解
論文名稱(外文):Exact Bounds for Tiny-Pan Coin Weighing
指導教授(中文):韓永楷
指導教授(外文):Hon, Wing-Kai
口試委員(中文):彭勝龍
謝孫源
李哲榮
蔡孟宗
廖崇碩
口試委員(外文):Peng, Sheng-Lung
Hsieh, Sun-Yuan
Lee, Che-Rung
Tsai, Meng-Tsung
Liao, Chung-Shou
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:100065801
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:55
中文關鍵詞:假幣問題條件整數分割圖論
外文關鍵詞:Coin WeighingTiny-PanGraphInteger partition avoid fCyclic property
相關次數:
  • 推薦推薦:0
  • 點閱點閱:169
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
尋找假幣是一個經典問題。本研究討論在給定f 個相同重量的假硬幣和r 個相同重量的真硬幣情況下,且天平的每個秤盤只能恰好容納一個硬幣時,要如何快速地將一對真
假硬幣放在天平上。我們將這個問題與另外兩個看似無關的優化問題等價,其中一個是圖論的,而另一個是數論的,運用這兩個不同的領域讓我們可以用不同的觀點建構出最佳測試策略(optimal testing scheme),並創新了一種有條件的整數分割問題(partition with avoidance)。此外,我們還討論了這個問題的一些推論性變體(inferential variants),並展示了這些問題與原始問題的緊密關係。
Searching for counterfeit coins is a classical problem. In this thesis, we study a variant of this problem where each pan of the balance scale can hold exactly one coin. Given f fake coins of the same weight and r real coins of the same weight, we show how to construct an optimal testing scheme, which uses the minimum number of comparisons in the worst case, that guarantees a real coin and a fake coin will be compared. We show that this problem is equivalent to two other seemingly unrelated optimisation problems, one from graph theory and the other from number theory, where the equivalences respectively allow us to prove optimality and speed up our construction method. Moreover, we also discuss some inferential variants of this problem, and demonstrate strong connections of these problems with the original one.
1 Introduction -------------------------1
2 An Equivalent Graph Problem ----------6
3 From Graph to Integer Partition -----13
4 Finding an Optimal Foolproof Scheme -19
5 Cyclic Property of  (f; r) ---------22
6 The Inferential Variants ------------30
7 Concluding Remarks ------------------49
[1] Martin Aigner and Anping Li. Searching for Counterfeit Coins, Graphs and Combinatorics, 13(1):9-20, 1997.
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3rd edition), 2009.
[3] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.
[4] Howard D. Grossman. The Twelve-Coin Problem, Scripta Mathematica
XI, pages 360-361, 1945.
[5] Richard K. Guy and Richard J. Nowakowski. Coin-Weighing Problems, The American Mathematical Monthly, 102(2):164-167, 1995.
[6] Lorenz Halbeisen and Norbert Hungerbuhler. The General Counterfeit Coin Problem, Discrete Mathematics, 147(1-3):139-150, 1995.
[7] Godfrey H. Hardy and Srinivasa Ramanujan. Asymptotic Formulae in
Combinatory Analysis, Proceedings of the London Mathemetical Society, 2(17):75{115, 1918.
[8] Tanya Khovanova and Konstantin Knop. Coins of Three Different
Weights, e-Print archive, arXiv:1409.0250 [math.HO], 2014.
[9] Eric Purdy. Lower Bounds for Coin Weighing Problems, ACM Transac-tions on Computation Theory (TOCT), 2(2):Article 3, 2011.
[10] Laszlo Pyber. How to Find Many Counterfeit Coins? Graphs and Com-binatorics, 2(1):173-177, 1986.
[11] Peng-Jun Wan and Ding-Zhu Du. A (log2 3 + 1=2) Competitive Algorithm for the Counterfeit Coin Problem, Discrete Mathematics, 163(1-3):173-200, 1997.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *