帳號:guest(18.118.95.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃浩雲
作者(外文):Huang, Hao-Yun
論文名稱(中文):解碼後傳送合作式網路下針對多重解析度服務之階層式調變研究
論文名稱(外文):A Study of Hierarchical Modulation for Multi-resolution Services in Decode-and-Forward Cooperative Networks
指導教授(中文):蔡育仁
指導教授(外文):Tsai, Yuh-Ren
口試委員(中文):馮世邁
溫志宏
伍紹勳
梁耀仁
學位類別:博士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:100064803
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:86
中文關鍵詞:多重解析度服務階層式調變合作式網路
外文關鍵詞:multi-resolution serviceshierarchical modulationcooperative networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為求增加系統吞吐量以及穩健性,多重解析度服務的概念已廣泛應用於廣播系統中,能使那些位於遠處並且處於不好的通道狀態下的接收者至少能夠擁有一個基本的通訊服務品質;擁有較佳通道狀態下的接收者能擁有更高的通訊服務品質。階層式調變是一種用來實現多重解析度服務的方法,它是由多種資訊串流所組成,那些資訊串流會根據其重要性的不同給予相對應的保護能力;其中,最重要的資訊(基礎位元)能被所有接收者解碼出來,然而,次要的資訊(精細位元)只能被那些擁有較佳通道狀態的接收者解碼出來。
在無線通訊系統中,為了減輕通道造成的訊號衰褪以及增大服務涵蓋範圍,合作式通訊是一個具有前景的技術,藉由中繼節點協助傳輸方式提供合作分集。為因應多媒體通訊需求的日益增長,可預期多重解析度服務與合作式通訊的結合應用將逐漸增加並成為下世代無線通訊系統中主要的傳輸模式。因此在這篇博士論文中,我們藉由中繼節點協助傳輸至具有較差傳輸通道的使用者來改善其多重解析度服務的整體性能表現,特別是精細位元的接收性能。在這篇博士論文的第一部分,基於現有方法的缺點,我們提出一個保護性對調的概念來提高中繼節點端之精細位元的保護能力,並且分別設計其最佳星座圖與最佳星座參數給訊源節點與中繼節點使用。此方法我們稱為保護性對調暨星座點重組。
此外,訊號空間分集也是一般會用來對抗無線通訊系統中通道衰落的技術。因此,在這篇博士論文的第二部分,我們結合訊號空間分集與階層式調變在合作式網路下,提升整體傳輸品質。相較於傳統訊號空間分集設計方法是直接把旋轉矩陣執行在疊加後星座圖上,其限制了搜尋旋轉角度時的選擇性,對此,我們提出多階層旋轉的概念:在進行星座圖疊加之前,各階層旋轉各自對應的角度,藉此增加在設計旋轉角度時的自由度。
根據模擬結果,如預期般,我們所提出保護性對調暨星座點重組及多階層旋轉的方法,對於精細位元而言能夠得到大幅度的改善增益。
To enhance system throughput and robustness, the concept of multi-resolution services, widely used in broadcast systems, allows the receivers that are located farther away from the source and experience bad channel conditions to receive at least a basic quality of service; the receivers with good channel quality receive a higher quality of service. Hierarchical modulation (HM) is one practical way to achieve multi-resolution services, which consists of multiple transmitted data streams with different degrees of protection based on their importance; that is, the most important information (known as the base bits) can be recovered by all receivers, while the less important information (known as the refinement bits) can be recovered only by receivers with better reception conditions.
In wireless communications, to mitigate fading effect and to extend service coverage, cooperative communication is a promising technology that provides cooperative diversity via the assistance of relay transmission. To meet the growing demand for multimedia communications, it is expected that the incorporation of multi-resolution services and cooperative communication will gradually become the major transmission mechanism in next-generation wireless communication systems. Therefore, in this dissertation, we focus on improving the overall performance of multi-resolution services, especially the reception performance of the refinement bits, for users with poor channel conditions by using relay-assisted transmission. In the first part of the dissertation, motivated by the drawbacks of the existing schemes, we propose the concept of protection level exchanging for the relay node to greatly enhance the protection of the refinement bits, and design the optimal constellation mappings and assign the optimal constellation parameters for the source node and the relay node, respectively. This scheme is referred to as the protection level exchanging with re-mapping (PERM).
Furthermore, signal space diversity (SSD) is also a technique commonly used to combat the fading effect by the additional modulation diversity in wireless communications. Therefore, in the second part of the dissertation, to further enhance overall transmission quality, we incorporate the SSD technique in cooperative networks with HM. Unlike a conventional SSD approach that directly performs the rotation matrix on the superimposed constellation, which leads to a limitation of the selectivity in search of the rotation angle, we propose the concept of multiple-layer rotation (MLR) that each layer, respectively, rotates its own angle on the corresponding constellation before performing constellation superposition to increase the degree of freedom of the rotation angle in the design.
As expected, based on the simulation results, the proposed PERM scheme and MLR scheme can lead to significant improvement gains on the refinement layer.
CHAPTER 1
Introduction.....................................................1
CHAPTER 2
Protection-Level-Exchanging Based Hierarchical Modulation........7
2.1 Preliminaries...............................................8
2.1.1 Hierarchical Modulation...................................8
2.1.2 System Model..............................................9
2.2 The Proposed PERM Based HM Scheme..........................11
2.2.1 Basic Concept............................................11
2.2.2 Optimal 4/16-QAM HM Constellation for the Relay Node.....12
2.2.3 Overall BER Performance Analysis.........................16
A. Exact SER on Source-Relay Link............................17
B. Exact BER for the Non-Cooperative Case....................18
C. Upper Bound of the BER for the Cooperative Case...........19
2.2.4 Constellation Priority Parameters Optimization...........21
2.3 Performance Evaluation.....................................24
2.4 Summary....................................................31
CHAPTER 3
Multiple-Layer Rotation Based Hierarchical Modulation for Signal Space Diversity.................................................32
3.1 Preliminaries..............................................33
3.1.1 Signal Space Diversity...................................33
3.1.2 System Model with Conventional SSD.......................34
3.2 The Proposed MLR Based HM Scheme...........................36
3.2.1 Basic Concept............................................38
3.2.2 SER Performance Analysis at the Relay Node...............40
A. Union Bound (UB) Approach.................................40
B. Nearest Neighbor (NN) Approximation.......................42
3.2.3 Rotation Angle Optimization..............................46
3.3 Performance Evaluation.....................................47
3.4 Summary....................................................55
CHAPTER 4
Rotation Angle Optimization with MLR Scheme for Signal Space Cooperative Communication.......................................57
4.1 System Model...............................................58
4.1.1 Signal Space Cooperative (SSC) Communication.............58
4.1.2 Problem Description......................................61
4.2 Performance Analysis.......................................61
4.2.1 Investigation of Relationship Between the Expanded Constellation and the Rotation Angles...........................62
4.2.2 Exact Symbol Error Rate at the Relay Node................63
4.2.3 Rotation Angle Optimization..............................66
4.3 Performance Evaluation.....................................67
4.4 Summary....................................................74
CHAPTER 5
Conclusion......................................................76
Appendix A......................................................78
Appendix B......................................................81
References......................................................84
[1] A. Nosratinia and A. Hedayat, “Cooperative communication in wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp. 74–80, Oct. 2004.
[2] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless network: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, pp. 3062–3080, Dec. 2004.
[3] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3037–3063, Sep. 2005.
[4] T. Hunter and A. Nosratinia, “Diversity through coded cooperation,” IEEE Trans. Wireless Commun., vol. 5, no. 2, pp. 283–289, Feb. 2006.
[5] T. Hunter, S. Sanayei, and A. Nosratinia, “Outage analysis of coded cooperation,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 375–391, Feb. 2006.
[6] M. Elfituri, W. Hamouda, and A. Ghrayeb, “A convolutional based coded cooperation scheme for relay channels,” IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 655–669, Feb. 2009.
[7] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[8] T. M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. IT-18, pp. 2–14, Jan. 1972.
[9] K. Ramchandram, A. Ortega, K. Uz, and M. Vetterli, “Multiresolution broadcast for digital HDTV using joint source/channel coding,” IEEE J. Select. Areas Commun., vol. 11, no. 1, pp. 6–23, Jan. 1993.
[10] L.-F. Wei, “Coded modulation with unequal error protection,” IEEE Trans. Commun., vol. 41, no. 10, pp. 1439–1449, Oct. 1993.
[11] Digital Video Broadcasting (DVB): Frame Structure, Channel Coding and Modulation for Digital Terrestrial Television, ETSI Standard EN 3000 744 V1.5.1, Nov. 2004.
[12] M.-K. Chang and S.-Y. Lee, “Performance analysis of cooperative communication system with hierarchical modulation over Rayleigh fading channel,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2848–2852, Jan. 2009.
[13] C. Hucher and P. Sadeghi, “Hierarchical modulation-based cooperative scheme: Minimizing the symbol error probability,” in Proc. IEEE Telecommun., Apr. 2010, pp. 309–315.
[14] H. X. Nguyen, H. H. Nguyen, and T. Le-Ngoc, “Signal transmission with unequal error protection in wireless relay network,” IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2166–2178, Jun. 2010.
[15] A. Z. Yalçýn and M. Yüksel, “Diversity analysis of hierarchical modulation in wireless relay networks,” IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2989–2994, Jul. 2014.
[16] T. V. Nguyen, P. C. Cosman, and L. B. Milstein, “Double-layer video transmission over decode-and-forward wireless relay networks using hierarchical modulation,” IEEE Trans. Image Process., vol. 23, no. 4, pp. 1791–1804, Apr. 2014.
[17] T. T. Pham, H. H. Nguyen, and H. D. Tuan, “Optimization of hierarchical modulation for decode-and-forward wireless relay network,” IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4484–4493, Nov. 2013.
[18] K. Boullé and J.-C. Belfiore, “Modulation scheme designed for the Rayleigh fading channel,” in Proc. Conf. Inform. Sciences Systems, Princeton, NJ, Mar. 1992, pp. 288–293.
[19] X. Giraud and J.-C. Belfiore, “Constellations matched to the Rayleigh fading channel,” IEEE Trans. Inform. Theory, vol. 42, no. 1, pp. 106–115, Jan. 1996.
[20] J. Boutros, E. Viterbo, C. Rastello, and J.-C. Belfiore, “Good lattice constellations for both Rayleigh fading and Gaussian channel,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 502–518, Mar. 1996.
[21] G. Taricco and E. Viterbo, “Performance of component interleaved signal sets for fading channels,” Electron, Lett., vol. 32, no. 13, pp. 1170–1172, Apr. 1996.
[22] J. Boutros and E. Viterbo, “Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel,” IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 1453–1467, Jul. 1998.
[23] Digital Video Broadcasting (DVB); Frame Structure, Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2), ETSI EN 302-755 V.1.2.1, Oct. 2009.
[24] H. Zhao, X. Zhou, and W. Wang, “Hierarchical modulation with vector rotation for multimedia broadcasting” in Proc. IEEE Globecom Workshop (GC Wkshps), Dec. 2010, pp. 888–892.
[25] A. Saeed, T. Quazi, and H. Xu, “Hierarchical modulation quadrature amplitude modulation with signal space diversity and maximal ratio combing reception in Nakagami-m fading channels” IET Commun., vol. 7, no. 12, pp. 1296–1303, Aug. 2013.
[26] A. Saeed, H. Xu, and T. Quazi, “Alamouti space-time block coded hierarchical modulation with signal space diversity and MRC reception in nakagami-m fading channel” IET Commun., vol. 8, no. 4, pp. 516–524, Mar. 2014.
[27] T. Quazi and H. Xu, “Simple unequal error protection mechanism for multimedia traffic using the Alamouti structure with hierarchical modulation and signal space diversity” IET Commun., vol. 8, no. 17, pp. 3128–3135, Nov. 2014.
[28] S. A. Ahmadzadeh, S. A. Motahari, and A. K. Khandani, “Signal space cooperative communication,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1266–1271, Apr. 2010.
[29] T. Lu, J. Ge, Y. Yang, and Y. Gao, “Outage probability analysis of signal space cooperative communications over Nakagami-m fading channels,” Electron. Lett., vol. 49, no. 18, pp. 1186–1188, Aug. 2013.
[30] O. Amin, R. Mesleh, S. S. Ikki, M. H. Ahmed, and O. A. Dobre, “Performance analysis of multiple relays cooperative systems with signal space diversity,” IEEE Trans. Veh. Technol., vol. 64, no. 8, pp. 3414–3425, Aug. 2015.
[31] H. U. Sokun, M. Cagri, S. Ikki, and H. Yanikomeroglu, “ A spectrally efficient signal space diversity-based two-way relaying system,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 2179–2184, Jul. 2017.
[32] K. G. Seddik, A. S. Ibrahim, and K. J. R. Liu, “Trans-Modulation in wireless networks,” IEEE Commun. Lett., vol. 12, no. 3, pp. 170–172, Mar. 2008.
[33] P. K. Vitthaladevuni and M.-S. Alouini, “A recursive algorithm for the exact BER computation of generalized hierarchical QAM constellations,” IEEE Trans. Inf. Theory., vol. 49, no. 1, pp. 297–307, Jan. 2003.
[34] J. M. Park, S. L. Kim, and J. Choi, “Hierarchically modulated network coding for asymmetric two-way relay systems,” IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2179–2184, Jun. 2010.
[35] Y. Xiao, “ The shorten LDPC codes of DVB-S2”, from http://www.mathworks.com/matlabcentral/fileexchange/27265-parity-check-matrices-of-dvbs2-codes.
[36] Z. Hu and H. Liu, “A low-complexity LDPC decoding algorithm for hierarchical broadcasting: Design and implementation,” IEEE Trans. Veh. Technol., vol. 62, no. 4, pp. 1843–1849, May. 2013.
[37] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels, 2nd ed. New York: Wiley, 2005.
[38] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, 1994.
[39] N. F. Kiyani, J. H. Weber, A. G. Zajić, and G. L. Stüber, “Performance analysis of a system using coordinate interleaving and constellation rotation in Rayleigh fading channels,” in Proc. IEEE Veh. Technol. Conf. (VTC), Sep. 2008, pp. 1–5.
[40] Z. Paruk and H. Xu, “Performance Analysis and Simplified Detection for Two -Dimensional Signal Space Diversity,” SAIEE Africa Research Journal, vol. 104, no. 3, pp. 97–106, Sep. 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *