帳號:guest(18.191.123.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張庭輔
作者(外文):Chang, Ting-Fu
論文名稱(中文):矽基板氮化鎵/氮化鋁鎵元件的穩定性研究
論文名稱(外文):Studies on the Instability of AlGaN/GaN on Silicon Devices
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):綦振瀛
蔡俊琳
邱顯欽
吳添立
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063873
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:109
中文關鍵詞:氮化鎵/氮化鋁鎵穩定性矽基板
外文關鍵詞:AlGaN/GaNinstabilitysiliconsubstrate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:450
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
在本研究當中,利用成長在矽基板上的氮化鋁鎵/氮化鎵晶圓,製作出各種不同結構的電晶體,並利用三種不同的脈衝量測方式分析各元件潛在的不穩定性。蕭基閘極的高電子遷移率電晶體呈現穩定的閘極特性;使用P 型氮化鎵閘極的元件則會發生電洞儲存在閘極區域的P 型氮化鎵層當中,產生浮閘的效果並降低臨界電壓,本研究率先指出,閘極金屬與P 型氮化鎵層應形成良好的歐姆接觸特性,藉此消除浮閘特性並提高元件穩定性,在經過高溫熱退火後,的確有效降低臨界電壓的偏移量,由原先的-0.99 V 降低至-0.23 V;使用金氧半閘極結構的元件則呈現明顯的不穩定性,特定偏壓條件下電子會注入並束縛在氧化層內,造成臨界電壓產生約2.5 V 的改變。
除了閘極以外,磊晶層也會因產生束縛電子並影響到元件特性,此特性在所有經過測試的元件當中都有被觀察到,因為磊晶層中的束縛電子遍佈在整個元件區域下方,首先二維電子氣會因此被部分空乏,造成所有元件的導通電組上升,並影響高電子遷移率電晶體的臨界電壓,蕭基閘極電晶體的臨界電壓偏移量可達+1.5 V,而蝕刻式金氧半閘極電晶體因為同時受到介電層以及磊晶層的影響,其偏移量甚至可達到+5.7 V;對蕭基二極體而言,導通的臨界電壓不會因此改變,因為蕭基位能壘並未被束縛電子所影響;對於電晶體而言,因為閘極下方的能帶被束縛電子影響,臨界電壓因此提升。此一效應可以藉由將基板維持在浮動電位或者是接地來改善,但同時也意味了對於背面高電位型垂直元件的限制,為了驗證此特性,故利用垂直跨接結構製作了垂直型的蕭基二極體以及電晶體,磊晶層中的束縛電子的確對於高壓切換特性產生了不良影響。
In this study, the observations of instability in different AlGaN/GaN on silicon devices using three stress and pulse conditions are reported. For the schottky gate HEMT, the device characteristics are relatively stable when using pulse gate measurement, thanks to the simple gate structure, which shows nearly no trapping center under the gate region. For the p-GaN gate HEMT, if the gate metal and the p-GaN layer shows non-ohmic contact behavior, the holes are inject into the p-GaN layer in the gate region from the gate metal then stored, due to the energy well between the AlGaN layer and the barrier height from the non-ohmic contact. The importance of the property between the gate metal and the p-GaN layer to be ohmic to eliminate the storage effect and to improve the reliability was pointed out for the first time. After an anneal to improve the ohmic contact to the p-GaN gate, the threshold voltage shift was reduced from -0.99 V to -0.23 V. The MIS gate HEMT shows clearly unstable characteristics. Electrons are injected into the gate oxide then trapped from 2DEG or the gate metal, depends on the stress conditions. The trapped electrons increase the threshold voltage and show a trapping energy of 0.33 eV. The threshold voltage shift can be as large as +2.5 V for the recessed MIS gate HEMT. Another possible electron trapping location is in the epilayer, which is observed in every AlGaN/GaN on silicon devices, including TLM, SBD, and the transistors. The trapped electrons in the epilayer decrease the 2DEG density and increase the device resistance. However, those trapped electrons in the epilayer show nearly no effect on the turn-on voltage of SBDs. Because the electrons are trapped in the epilayer, which is beneath 2DEG, the schottky barrier height remains unchanged. For the transistors, the trapped electrons bend the energy
diagram under the gate region and increase the threshold voltage. A threshold voltage shift of +1.5 V was observed in Schottky gate HEMT. The recessed MIS gate HEMT shows a +5.7 V threshold voltage shift due to the electrons trapped in the epilayer and the gate dielectric. The extracted trapping energy in the epilayer is about 0.5 eV in this study. This effect can be minimized by grounding or floating the silicon substrate, which might limits the applications of vertical devices with a rear high voltage electrode. A vertical SBD and a vertical schottky gate HEMT with a vertical interconnect structure, are fabricated for confirmation. For the vertical cathode SBD and the vertical drain schottky gate HEMT, a great increment of on-resistance is observed using pulse measurement compared with other devices with different interconnect structures.
Chapter 1 Introduction ................................................................................................ 1
1.1 Material Property ....................................................................................... 1
1.2 Epilayer Structure and Growth .................................................................. 6
1.3 Device Structure......................................................................................... 9
1.4 Motivation ................................................................................................ 12
Chapter 2 Fabrication and Process Flow .................................................................. 14
2.1 Introduction .............................................................................................. 14
2.2 Epi structures ........................................................................................... 15
2.3 Process Flow for a Schottky Gate HEMT ................................................ 16
2.3.1 Sample Preparation ...................................................................... 16
2.3.2 Alignment Key and Ohmic Metal ................................................ 17
2.3.3 Isolation........................................................................................ 17
2.3.4 Passivation Layer and Field Oxide .............................................. 18
2.3.5 Contact Window ........................................................................... 19
2.3.6 Gate Metal and Pad Metal ............................................................ 19
2.4 Process Flow for a p-GaN Gate HEMT ................................................... 20
2.4.1 Sample Preparation ...................................................................... 20
2.4.2 Alignment Key and Ohmic Metal ................................................ 20
2.4.3 Isolation........................................................................................ 21
2.4.4 Gate Metal .................................................................................... 22
2.4.5 p-GaN Etching ............................................................................. 22
2.4.6 Passivation Layer and Field Oxide .............................................. 23
2.4.7 Contact Window ........................................................................... 23
2.4.8 Pad Metal ..................................................................................... 24
2.5 Process Flow for Recessed MIS Gate HEMT .......................................... 25
2.5.1 Sample Preparation ...................................................................... 25
2.5.2 Alignment Key and Body Contact Etching ................................. 26
2.5.3 Gate Recess .................................................................................. 26
2.5.4 Gate Dielectric and Passivation Layer ......................................... 27
2.5.5 Ohmic Metal ................................................................................ 28
2.5.6 Isolation........................................................................................ 28
2.5.7 Gate Metal, Pad Metal, and Body Contact Metal ........................ 28
Chapter 3 Instability from the Gate .......................................................................... 31
3.1 Introduction .............................................................................................. 31
3.2 DC Measurement or Pulse Measurement ................................................ 32
3.3 Resistor Network Model .......................................................................... 35
3.4 Gate Instability in Schottky Gate HEMT................................................. 38
3.5 Gate Instability in p-GaN Gate HEMT .................................................... 41
3.6 Gate Instability in Recessed MIS Gate HEMT ........................................ 51
3.7 Summary .................................................................................................. 57
Chapter 4 Instability from Body ............................................................................... 60
4.1 Introduction .............................................................................................. 60
4.2 Body Instability in Schottky Barrier Diode ............................................. 61
4.3 Body Instability in Schottky Gate HEMT ............................................... 63
4.4 Body Instability in Recessed MIS Gate HEMT ....................................... 65
4.5 Summary .................................................................................................. 68
Chapter 5 Instability from Substrate ......................................................................... 70
5.1 Introduction .............................................................................................. 70
5.2 The Influence of Epilayer Traps in TLM and SBD ................................. 72
5.3 The Influence of Epilayer Traps on HEMTs ............................................ 74
5.4 Summary .................................................................................................. 77
Chapter 6 Instability of AlGaN/GaN Devices on Silicon with Vertical Interconnect
Structure ................................................................................................... 81
6.1 Introduction .............................................................................................. 81
6.2 Schottky Barrier Diode with Vertical Interconnect Structure .................. 83
6.3 HEMTs with Vertical Interconnect Structure ........................................... 87
6.4 Summary .................................................................................................. 92
Chapter 7 Conclusion and Future Work ................................................................... 93
7.1 Conclusion ............................................................................................... 93
7.2 Future Work ............................................................................................. 96
Reference 98
Publication 106
[1] J. Liu, Y. Zhou, R. Chu, Y. Cai, K. J. Chen, and K. M. Lau, "Highly linear Al/sub
0.3/Ga/sub 0.7/N-Al/sub 0.05/Ga/sub 0.95/N-GaN composite-channel
HEMTs," IEEE electron device letters, vol. 26, no. 3, pp. 145-147, 2005.
[2] M. Kanamura, T. Kikkawa, T. Iwai, K. Imanishi, T. Kubo, and K. Joshin, "An
over 100 W n-GaN/n-AlGaN/GaN MIS-HEMT power amplifier for wireless
base station applications," in Electron Devices Meeting, 2005. IEDM Technical
Digest. IEEE International, 2005, pp. 572-575: IEEE.
[3] N. Ikeda et al., "GaN power transistors on Si substrates for switching
applications," Proceedings of the IEEE, vol. 98, no. 7, pp. 1151-1161, 2010.
[4] T. P. Chow and R. Tyagi, "Wide bandgap compound semiconductors for
superior high-voltage power devices," in Power Semiconductor Devices and
ICs, 1993. ISPSD'93., Proceedings of the 5th International Symposium on, 1993,
pp. 84-88: IEEE.
[5] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous
and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN
heterostructures," Journal of applied physics, vol. 85, no. 6, pp. 3222-3233,
1999.
[6] J. Wu, "When group-III nitrides go infrared: New properties and perspectives,"
Journal of Applied Physics, vol. 106, no. 1, p. 5, 2009.
[7] H. P. Maruska and J. Tietjen, "The preparation and properties of Vapor ‐
Deposited single‐crystal‐line GaN," Applied Physics Letters, vol. 15, no. 10, pp.
327-329, 1969.
[8] L. Liu and J. H. Edgar, "Substrates for gallium nitride epitaxy," Materials
Science and Engineering: R: Reports, vol. 37, no. 3, pp. 61-127, 2002.
[9] T. P. Chow, "High-voltage SiC and GaN power devices," Microelectronic
Engineering, vol. 83, no. 1, pp. 112-122, 2006.
[10] P. Hageman, J. Schermer, and P. Larsen, "GaN growth on single-crystal
diamond substrates by metalorganic chemical vapour deposition and hydride
vapour deposition," Thin Solid Films, vol. 443, no. 1, pp. 9-13, 2003.
[11] S. Kukushkin, A. Osipov, V. Bessolov, B. Medvedev, V. Nevolin, and K. Tcarik,
"Substrates for epitaxy of gallium nitride: new materials and techniques," Rev.
Adv. Mater. Sci, vol. 17, no. 1/2, pp. 1-32, 2008.
[12] S. Degroote and R. Lieten, "Deposition of group iii-nitrides on ge," ed: Google
99
Patents, 2009.
[13] N.-C. Chen, W.-C. Lien, M.-C. Wu, and C.-F. Shih, "Effects of the GaN and
AlN nucleation layers on the crack-free AlGaN templates," Journal of Applied
Physics, vol. 104, no. 6, p. 5p, 2008.
[14] D. S. Katzer, S. C. Binari, B. V. Shanabrook, L. Zhou, and D. J. Smith, "Effect
of Al/N ratio during nucleation layer growth on Hall mobility and buffer leakage
of molecular-beam epitaxy grown AlGaN/GaN heterostructures," Applied
Physics Letters, vol. 85, no. 17, p. 3p, 2004.
[15] C. Lacam, M. Tordjman, and M. A. di Forte-Poisson, "Impact of the substrate
and of the nucleation layer on the properties of AlGaN/GaN HEMTs on SiC,"
(in English), Journal of Crystal Growth, vol. 370, p. 6p, 2013.
[16] M. R. Leys, M. Germain, R. Belmans, and G. Borghs, "Influence of AlGaN
nucleation layers on structural and electrical properties of GaN on 4H-SiC," (in
English), Journal of Crystal Growth, vol. 272, no. 1-4, p. 6p, 2004.
[17] A. T. Schremer, N. G. Weimann, O. Ambacher, L. F. Eastman, and J. R. Shealy,
"AlGaN/GaN heterostructures on insulating AlGaN nucleation layers," Applied
Physics Letters, vol. 75, no. 3, p. 3p, 1999.
[18] A. Watanabe and E. Takashi, "Influence of strain induced by AlN nucleation
layer on the electrical properties of AlGaN/GaN heterostructures on Si(111)
substrate," AIP Advances, vol. 4, no. 10, p. 8p, 2014.
[19] H. Heinke, V. Kirchner, and D. Hommel, "Strain relaxation in AlGaN/GaN
superlattices grown on GaN," Journal of Applied Physics, vol. 89, no. 4, p. 8p,
2001.
[20] H. C. Cheng, "Mobility enhancements in AlGaN/GaN/SiC with stair-step and
graded heterostructures," Applied Physics Letters, vol. 70, no. 19, p. 3p, 1997.
[21] J. Han and Q. Sun, "Strain relaxation and dislocation reduction in AlGaN stepgraded
buffer for crack-free GaN on Si (111)," (in English), Physica Status
Solidi (C), vol. 11, no. 3/4, p. 5p, 2014.
[22] J. Redwing, "Growth stresses and cracking in GaN films on (111) Si grown by
metalorganic chemical vapor deposition. II. Graded AlGaN buffer layers,"
Journal of Applied Physics, vol. 98, no. 2, p. 8p, 2005.
[23] N. Watanabe, M. Uchida, and H. Matsuzaki, "Effects of surface morphology
and C concentration in C-doped GaN buffer on breakdown voltage of
AlGaN/GaN HEMTs on free-standing GaN substrate," (in English), Physica
Status Solidi. A: Applications & Materials Science, vol. 213, no. 5, p. 5p, 2016.
[24] Y. Satoh, H. Sasaki, I. Masayuki, and S. Yoshida, "C-doped GaN buffer layers
with high breakdown voltages for high-power operation AlGaN/GaN HFETs on
4-in Si substrates by MOVPE," (in English), Journal of Crystal Growth, vol.
100
298, p. 4p, 2007.
[25] H. Tang, J. A. Bardwell, E. M. Hsu, J. B. Webb, and S. Rolfe, "AlGaN/GaN
field effect transistors with C-doped GaN buffer layer as an electrical isolation
template grown by molecular beam epitaxy," (in English), Solid-State
Electronics, vol. 49, no. 5, p. 6p, 2005.
[26] H. Tang, "Semi-insulating C-doped GaN and high-mobility AlGan/Gan
heterostructures grown," Applied Physics Letters, vol. 75, no. 7, p. 3p, 1999.
[27] M. Azize et al., "Subsurface Fe-doped semi-insulating GaN templates for
inhibition of regrowth interface pollution in AlGaN/GaN HEMT structures," (in
English), Journal of Crystal Growth, vol. 310, no. 5, p. 7p, 2008.
[28] M. Pophristic, C. Ho-Young, B. Peres, M. G. Spencer, and L. F. Eastman, "The
Effect of an Fe-doped GaN Buffer on OFF-State Breakdown Characteristics in
AlGaN/GaN HEMTs on Si Substrate," (in English), IEEE Transactions on
Electron Devices, vol. 53, no. 12, p. 6p, 2006.
[29] C. Jiang et al., "Subband electron properties of modulation-doped Al x Ga 1− x
N/GaN heterostructures with different barrier thicknesses," Applied Physics
Letters, vol. 79, no. 3, pp. 374-376, 2001.
[30] J. P. Ibbetson et al., "Polarization effects, surface states, and the source of
electrons in AlGaN/GaN heterostructure field effect transistors," Applied
Physics Letters, vol. 77, no. 2, 2000.
[31] I. Smorchkova et al., "Polarization-induced charge and electron mobility in
AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam
epitaxy," Journal of applied physics, vol. 86, no. 8, pp. 4520-4526, 1999.
[32] R. Gaska and M. S. Shur, "Piezoelectric doping and elastic strain relaxation in
AlGaN-GaN heterostructure field effect transistors," Applied Physics Letters,
vol. 73, no. 24, 1998.
[33] D.-Y. Lin, C.-F. Lin, C.-W. Chang, J.-C. Zhang, and S.-J. Tu, "High-temperature
carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN
spacer layer," (in English), Journal of Crystal Growth, vol. 464, p. 5p, 2017.
[34] N. Anbuselvan, N. Mohankumar, D. Godwinraj, and C. K. Sarkar, "Modeling
of sheet carrier density and microwave frequency characteristics in Spacer
based AlGaN/AlN/GaN HEMT devices," (in English), Solid-State Electronics,
vol. 91, p. 9p, 2014.
[35] A. Mohanbabu, N. Anbuselvan, N. Mohankumar, D. Godwinraj, and C. K.
Sarkar, "Modeling of 2DEG sheet carrier density and DC characteristics in
spacer based AlGaN/AlN/GaN HEMT devices," (in English), Superlattices &
Microstructures, vol. 64, p. 13p, 2013.
[36] X. Wang et al., "A 2 nm low temperature GaN spacer to improve the transport
101
properties of two-dimensional electron gas in AlGaN/InAlN/AlN/GaN
heterostructures," Applied Physics Letters, vol. 101, no. 18, p. 4p, 2012.
[37] B. Gao, T. Hashizume, M. Hiroki, S. Yamahata, and N. Shigekawa,
"Al0.44Ga0.56N spacer layer to prevent electron accumulation inside barriers
in lattice-matched InAlN/AlGaN/AlN/GaN heterostructures," Applied Physics
Letters, vol. 98, no. 14, p. 3p, 2011.
[38] Q. Wang et al., "Effects of a GaN cap layer on the reliability of AlGaN/GaN
Schottky diodes," (in English), Physica Status Solidi. A: Applications &
Materials Science, vol. 212, no. 5, p. 4p, 2015.
[39] J. Zhou, C. Kong, X. Dong, Y. Zhang, H. Lu, and T. Chen, "Monolithic
integrated enhancement/depletion-mode AlGaN/GaN high electron mobility
transistors with cap layer engineering," Applied Physics Letters, vol. 102, no. 4,
p. 1p, 2013.
[40] P. C. Chang and S. J. Chang, "AlGaN/GaN metal-insulator-semiconductor
heterostructure field-effect transistor with an in-situ AlN cap layer," Applied
Physics Letters, vol. 99, no. 15, p. 3p, 2011.
[41] T. Deguchi, A. Nakagawa, and T. Egawa, "Influence of crystalline quality of
low-temperature GaN cap layer on current collapse in AlGaN/GaN
heterostructure field-effect transistors," Applied Physics Letters, vol. 92, no. 10,
p. 3p, 2008.
[42] I. Hwang et al., "1.6 kV, 2.9 mΩ cm 2 normally-off p-GaN HEMT device," in
Power Semiconductor Devices and ICs (ISPSD), 2012 24th International
Symposium on, 2012, pp. 41-44: IEEE.
[43] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, "Normally-off
AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer," in Power
Semiconductor Devices & IC's (ISPSD), 2010 22nd International Symposium
on, 2010, pp. 347-350: IEEE.
[44] Y. Uemoto et al., "Gate injection transistor (GIT)—A normally-off AlGaN/GaN
power transistor using conductivity modulation," IEEE Transactions on
Electron Devices, vol. 54, no. 12, pp. 3393-3399, 2007.
[45] X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M. Shur, "Enhancement
mode AlGaN/GaN HFET with selectively grown pn junction gate," Electronics
Letters, vol. 36, no. 8, pp. 753-754, 2000.
[46] I. J. Luxmoore et al., "Characterization of gate recessed GaN/AlGaN/GaN high
electron mobility transistors fabricated using a SiCl4/SF6 dry etch recipe,"
Journal of Applied Physics, vol. 108, no. 1, p. 7p, 2010.
[47] X. Hu, A. Tarakji, J. Deng, R. Gaska, M. Shur, and M. A. Khan, "High-power
AlGaN/InGaN/AlGaN/GaN recessed gate heterostructure field-effect
102
transistors," Applied Physics Letters, vol. 86, no. 14, p. 3p, 2005.
[48] Z. Guang-Yuan, "Characterizations of Recessed Gate AlGaN/GaN HEMTs on
Sapphire," IEEE Transactions on Electron Devices, vol. 48, no. 3, p. 6p, 2001.
[49] C. L. Yung et al., "High-temperature studies of multiple fluorinated traps within
an Al2O3 gate dielectric for E-Mode AlGaN/GaN power MIS-HEMTs,"
Semiconductor Science & Technology, vol. 31, no. 2, p. 1p, 2016.
[50] Y.-H. Wang et al., "6.5 V high threshold voltage AlGaN/GaN power metalinsulator-
semiconductor high electron mobility transistor using multilayer
fluorinated gate stack," IEEE Electron Device Letters, vol. 36, no. 4, pp. 381-
383, 2015.
[51] X. Liu, J. Zhang, B. Tian, H. Jiang, W. Zhang, and Y. Li, "Threshold voltage
modulation mechanism of AlGaN/GaN metal-insulator-semiconductor highelectron
mobility transistors with fluorinated Al2O3 as gate dielectrics,"
Applied Physics Letters, vol. 100, no. 13, p. 3p, 2012.
[52] W. K. Ge, J. N. Wang, and K. J. Chen, "Persistent photoconductivity and carrier
transport in AlGaN/GaN heterostructures treated by fluorine plasma," Applied
Physics Letters, vol. 92, no. 8, p. 3p, 2008.
[53] A. Endoh et al., "Non-recessed-gate enhancement-mode AlGaN/GaN high
electron mobility transistors with high RF performance," Japanese journal of
applied physics, vol. 43, no. 4S, p. 2255, 2004.
[54] K.-S. Im et al., "Normally Off Single-Nanoribbon $\ hbox {Al} _ {2}\ hbox {O}
_ {3}\ hbox {/GaN} $ MISFET," IEEE Electron Device Letters, vol. 34, no. 1,
pp. 27-29, 2013.
[55] J. J. Freedsman, T. Kubo, and T. Egawa, "High Drain Current Density E-Mode
${\ rm Al} _ {2}{\ rm O} _ {3} $/AlGaN/GaN MOS-HEMT on Si With
Enhanced Power Device Figure-of-Merit $(4\ times 10^{8}~{\ rm V}^{2}\
Omega^{-1}{\ rm cm}^{-2}) $," IEEE Transactions on Electron Devices, vol.
60, no. 10, pp. 3079-3083, 2013.
[56] U. K. Mishra, L. Shen, T. E. Kazior, and Y.-F. Wu, "GaN-based RF power
devices and amplifiers," Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305,
2008.
[57] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface
states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE
Transactions on Electron Devices, vol. 48, no. 3, pp. 560-566, 2001.
[58] T. Hashizume, S. Ootomo, and H. Hasegawa, "Suppression of current collapse
in insulated gate AlGaN/GaN heterostructure field-effect transistors using
ultrathin Al 2 O 3 dielectric," Applied physics letters, vol. 83, no. 14, pp. 2952-
2954, 2003.
103
[59] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F.
Eastman, "The effect of surface passivation on the microwave characteristics of
undoped AlGaN/GaN HEMTs," IEEE Electron Device Letters, vol. 21, no. 6,
pp. 268-270, 2000.
[60] A. Chini, D. Buttari, R. Coffie, S. Heikman, S. Keller, and U. Mishra, "12
W/mm power density AlGaN/GaN HEMTs on sapphire substrate," Electronics
Letters, vol. 40, no. 1, pp. 73-74, 2004.
[61] S. Kaneko et al., "Current-collapse-free operations up to 850 V by GaN-GIT
utilizing hole injection from drain," in Power Semiconductor Devices & IC's
(ISPSD), 2015 IEEE 27th International Symposium on, 2015, pp. 41-44: IEEE.
[62] Status of Power Electronics Industry 2015 Report. Available:
http://www.yole.fr/SPEI_2015.aspx#.WToQr-uGNjU
[63] B. J. Baliga, "Gallium nitride devices for power electronic applications,"
Semiconductor Science and Technology, vol. 28, no. 7, p. 074011, 2013.
[64] "GaN to grow at 9% CAGR to over 18% of RF device market by 2020."
[65] T.-F. Chang, "The characteristic of AlGaN/GaN HEMT with different isolation
and epitaxial layers," master thesis, National Tsing Hua University, Taiwan,
Hsinchu, 2012.
[66] J.-Y. Shiu et al., "Oxygen ion implantation isolation planar process for
AlGaN/GaN HEMTs," IEEE electron device letters, vol. 28, no. 6, pp. 476-478,
2007.
[67] T. Oishi et al., "Highly resistive GaN layers formed by ion implantation of Zn
along the c axis," Journal of applied physics, vol. 94, no. 3, pp. 1662-1666, 2003.
[68] G. Hanington et al., "P/He ion implant isolation technology for AlGaN/GaN
HFETs," Electronics Letters, vol. 34, no. 2, pp. 193-195, 1998.
[69] T. Deguchi, T. Kikuchi, M. Arai, K. Yamasaki, and T. Egawa, "High on/off
current ratio p-InGaN/AlGaN/GaN HEMTs," IEEE Electron Device Letters, vol.
33, no. 9, pp. 1249-1251, 2012.
[70] Y.-H. Liu, "Fabrication and Characterization of Enhancement-Mode Recessed-
Gate AlGaN/GaN MOS-HEMTs," master thesis, National Tsing Hua University,
Taiwan, Hsinchu, 2014.
[71] M. Kato et al., "Read-disturb degradation mechanism due to electron trapping
in the tunnel oxide for low-voltage flash memories," in Electron Devices
Meeting, 1994. IEDM'94. Technical Digest., International, 1994, pp. 45-48:
IEEE.
[72] K. Shiojima, T. Sugahara, and S. Sakai, "Large Schottky barriers for Ni/p-GaN
contacts," Applied physics letters, vol. 74, no. 14, pp. 1936-1938, 1999.
[73] H. W. Jang, S. Y. Kim, and J.-L. Lee, "Mechanism for Ohmic contact formation
104
of oxidized Ni/Au on p-type GaN," Journal of Applied Physics, vol. 94, no. 3,
pp. 1748-1752, 2003.
[74] L.-C. Chen et al., "Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN,"
Applied Physics Letters, vol. 76, no. 25, pp. 3703-3705, 2000.
[75] J. Sheu et al., "High-transparency Ni/Au ohmic contact to p-type GaN," Applied
physics letters, vol. 74, no. 16, pp. 2340-2342, 1999.
[76] J.-K. Ho et al., "Low-resistance ohmic contacts to p-type GaN achieved by the
oxidation of Ni/Au films," Journal of Applied Physics, vol. 86, no. 8, pp. 4491-
4497, 1999.
[77] P. Moens et al., "On the impact of carbon-doping on the dynamic Ron and offstate
leakage current of 650V GaN power devices," in Power Semiconductor
Devices & IC's (ISPSD), 2015 IEEE 27th International Symposium on, 2015,
pp. 37-40: IEEE.
[78] T.-F. Chang et al., "Threshold voltage instability in AlGaN/GaN HEMTs," in
Power Electronics and Drive Systems (PEDS), 2015 IEEE 11th International
Conference on, 2015, pp. 681-683: IEEE.
[79] J. Joh and J. A. Del Alamo, "A current-transient methodology for trap analysis
for GaN high electron mobility transistors," IEEE transactions on electron
Devices, vol. 58, no. 1, pp. 132-140, 2011.
[80] F. Gaensslen and R. Jaeger, "Temperature dependent threshold behavior of
depletion mode MOSFETs: characterization and simulation," Solid-State
Electronics, vol. 22, no. 4, pp. 423-430, 1979.
[81] S. Lenci, J. Hu, N. Ronchi, and S. Decoutere, "AlGaN/GaN power schottky
diodes with anode dimension up to 100 mm on 200 mm Si substrate," in Power
Semiconductor Devices and ICs (ISPSD), 2016 28th International Symposium
on, 2016, pp. 91-94: IEEE.
[82] A. Chini et al., "Experimental and Numerical Analysis of Hole Emission
Process From Carbon-Related Traps in GaN Buffer Layers," IEEE Transactions
on Electron Devices, vol. 63, no. 9, pp. 3473-3478, 2016.
[83] J. Croon, G. Hurkx, J. Donkers, and J. Šonský, "Impact of the backside potential
on the current collapse of GaN SBDs and HEMTs," in Power Semiconductor
Devices & IC's (ISPSD), 2015 IEEE 27th International Symposium on, 2015,
pp. 365-368: IEEE.
[84] I. Rossetto et al., "Buffer Traps in Fe-Doped AlGaN/GaN HEMTs:
Investigation of the Physical Properties Based on Pulsed and Transient
Measurements," (in English), IEEE Transactions on Electron Devices, vol. 61,
no. 12, p. 8p, 2014.
[85] M. Hikita et al., "AlGaN/GaN power HFET on silicon substrate with source-via
105
grounding (SVG) structure," IEEE Transactions on Electron Devices, vol. 52,
no. 9, pp. 1963-1968, 2005.
[86] I. Daumiller, U. Heinle, M. Kunze, and D. Nikolaev, "Vertically contacted
electronic component and method for producing same," ed: Google Patents,
2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *