帳號:guest(18.118.140.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許振彬
作者(外文):Hsu, Chen-Pin
論文名稱(中文):應用於微型化電子式生物感測器之非法拉第電流分析以及封裝技術開發
論文名稱(外文):Analysis of non-faradaic current and development of package technology for miniaturized electronic biosensors
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu-Lin
口試委員(中文):林彥亨
田禮嘉
黃郁棻
林宗宏
口試委員(外文):Lin, Yen-Heng
Tien, Li-Chia
Huang, Yu-Fen
Lin, Zong-Hong
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035802
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:電容電流時域分析法動態量測生物感測器晶片陣列封裝
外文關鍵詞:non-faradaic currentdynamic measurementbiosensorpackaging technology
相關次數:
  • 推薦推薦:0
  • 點閱點閱:279
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
我們對於微型化電子式的生物感測器開發了新的量測方法及封裝技術。透過非法拉第電流的量測,在高鹽環境中可以將離子的遮蔽效應帶來的影響降至最低。高鹽濃度的系統在離子移動穩定之前會有較高的鬆弛電流,修飾DNA後的電極比完全裸露的電極有更高的電流,插入doxorubicin後的dsDNA反而會降低電流,與RT蛋白質結合的dsDNA也會使電流降低。在這些條件下,增加或減少的電流分別歸因於離子濃度增加或離子遷移率降低。對於感測器來說,包括瞬間電流、總電荷和時間常數等三個指標都證明可以應用於生物感測器上。電極的表面修飾也成功使用離子濃度、離子遷移率和溶液中的電場來解釋。基於相同的原理,這種生物感測器也測試了HIV-1 RT蛋白質。動態測量可以從瞬間電流鬆弛反應中獲得更多的訊息,電容式的電流感測器可用於更多具有超低偵測限的生物分子檢測上。另外我們也開發了一個平面化封裝技術,將微小化的晶片嵌入到塑膠基板中並與微流道結合,透過電性量測可證明封裝的方式有效,並以此封裝元件量測了不同濃度的CRP蛋白質。此外,我們也展示多個感測器製做的陣列。因成本低廉且製做方式簡單,這對未來系統封裝的應用是非常具有吸引力的。
We have developed the non-faradaic current analysis methods, and the package technology for miniaturized electronic biosensors. The non-faradaic current brings important information of electrical components. In high salt environment, this method can minimize the influence of ion screening effect. The system with high salt concentration will have a higher relaxation current before the ionization is stable. Immobilization of dsDNA caused the electric current increased, comparing to the electrode without any immobilization. Doxorubicin, ranging from 1pM to 1nM, intercalated the dsDNA and caused different relaxation of the electric currents. The capacitive current relaxed, involved with ions and the DNA. The capacitive current was constantly recorded before the DNA fully relaxed. The time domain method for dynamic measurements was used in this study. Furthermore, a package technology has been developed for miniaturized electronic biosensors. The chip was embedded in a plastic substrate and has a coplanar surface with the substrate. The package device was used in measuring the current of the protein. In addition, the electronic sensor arrays are also shown. Because of the low cost and ease of production, the system packaging applications provides an attractive option in the future.
中文摘要 i
Abstract ii
目次 iii
圖片目錄 v
第一章. 緒論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 研究目標 4
第二章. 文獻回顧 5
2.1 非法拉第電流對生物感測器的影響 5
2.1.1 電雙層系統與等效電路 5
2.1.2 離子遷移效應 6
2.1.3 電場對DNA的影響 7
2.1.4 高鹽環境的量測 9
2.2 封裝技術開發 12
2.1.1 微流道系統封裝 13
第三章. 時域分析法於生物感測器上的應用 16
3.1 前言 16
3.2 時域分析法的量測 17
3.3 緩衝溶液中的離子效應 21
3.4 時域分析法在生物感測器上的應用 24
3.4.1 dsDNA 與 doxorubicin 24
3.4.2 HIV-1 RT 蛋白質 30
3.5 結果與討論 35
第四章. 生物感測器的微小化封裝技術與感測器陣列 36
4.1 前言 36
4.2 單一晶片封裝 37
4.2.1 HEMT感測晶片的製做 37
4.2.2 感測晶片的封裝步驟 39
4.2.3 結果與討論 41
4.3 晶片封裝技術應用於生醫感測 46
4.4 晶片陣列封裝 49
4.5 結果與討論 51
第五章. 結論 52
第六章. 參考資料 54

[1]. X. Luo, J. J. Davis, “Electrical biosensors and the label free detection of protein disease biomarkers”. Chem Soc Rev 42, 5944-5962 (2013).
[2]. R. N. Vyas, K. Li, B. Wang, “Modifying Randles circuit for analysis of polyoxometalate layer-by-layer films”. J Phys Chem B 114, 15818-15824 (2010).
[3]. Vijayender Bhalla, Sandro Carrara, Priyanka Sharma, Yogesh Nangia, C. Raman Suri, “Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I”. Sensors and Actuators B, 161, 761-768 (2012).
[4]. E. A. de Vasconcelos et al., “Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor”. Biosens Bioelectron 25, 870-876 (2009).
[5]. K. C. Lin et al., “Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins”. Biosens Bioelectron 25, 2336-2342 (2010).
[6]. Martin Hedstr¨om, Igor Yu. Galaev, Bo Mattiasson, “Continuous measurements of a binding reaction using a capacitive biosensor”. Biosensors and Bioelectronics, 21, 41-48 (2005).
[7]. M. Dijksma, B. Kamp, J. C. Hoogvliet, and W. P. van Bennekom, “Development of an Electrochemical Immunosensor for Direct Detection of Interferon-ç at the Attomolar Level”. Anal. Chem., 73, 901-907 (2001).
[8]. Wei Liao, Xinyan Tracy Cui, “Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF” Biosensors and Bioelectronics, 23, 218-224 (2007).
[9]. Ritesh N. Vyas, Kuyen Li, and Bin Wang “Modifying Randles Circuit for Analysis of Polyoxometalate Layer-by-Layer Films”. J. Phys. Chem. B, 114, 15818-15824 (2010).
[10]. C. Berggren, B. Bjarnason, G. Johansson, “Capacitive biosensors”. Electroanal 13, 173-180 (2001).
[11]. Christine Berggren and Gillis Johansson “Capacitance Measurements of Antibody-Antigen Interactions in a Flow System”. Anal. Chem., 69, 3651 -3657 (1997).
[12]. P. R. Van Rheenen, M. J. Mckelvy, And W. S. Glaunsingers “Synthesis and Characterization of Small Platinum Particles Formed by the Chemical Reduction of Chloroplatinic Acid”. Journal of Solid State Chemistry, 67, 151-169 (1987).
[13]. C. J. Lim, S. Y. Lee, L. J. Kenney, J. Yan, “Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing”. Sci Rep 2, 509 (2012).
[14]. N. Kaji, M. Ueda, Y. Baba, “Molecular stretching of long DNA in agarose gel using alternating current electric fields”. Biophys J, 82, 335-344 (2002).
[15]. WAndr´e Germishuizen, Christoph W¨alti, Ren´e Wirtz, Michael B Johnston, Michael Pepper, AGiles Davies and Anton P J Middelberg. “Selective dielectrophoretic manipulation of surface-immobilized DNA molecules” Nanotechnology, 14, 896-902 (2003).
[16]. S. Ferree, H. W. Blanch, “Electrokinetic stretching of tethered DNA”. Biophys J 85, 2539-2546 (2003).
[17]. G. C. Randall, K. M. Schultz, P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices”. Lab Chip, 6, 516-525 (2006).
[18]. T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow”. Science 268, 83-87 (1995).
[19]. D. Long, J. L. Viovy, A. Ajdari, “Stretching DNA with electric fields revisited”. Biopolymers 39, 755-759 (1996).
[20]. Martins Vanags, Janis Kleperis and Gunars Bajars. “Water Electrolysis with Inductive Voltage Pulses” Electrolysis, Dr. Janis Kleperis (Ed.), ISBN: 978-953-51-0793-4, InTech, DOI: 10.5772/52453. (2012)
[21]. C. Berggren, P. Stalhandske, J. Brundell, G. Johansson, “A feasibility study of a capacitive biosensor for direct detection of DNA hybridization”. Electroanal 11, 156-160 (1999).
[22]. Xiaoqin Fang, Ooi Kiang Tan, Man Siu Tse, Eng Eong Ooi, “A label-free immunosensor for diagnosis of dengue infection with simple electrical measurements” Biosensors and Bioelectronics, 25, 1137–1142 (2010).
[23]. Christine Berggren, Bjarni Bjarnason, Gillis Johansson “An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step” Biosensors & Bioelectronics, 13, 1061-1068 (1998).
[24]. Mengsu Yang,* Hellas C. M. Yau, and Hing Leung Chan, “Adsorption Kinetics and Ligand-Binding Properties of Thiol-Modified Double-Stranded DNA on a Gold Surface” Langmuir, 14, 6121-6129 (1998).
[25]. Younghee Hahn and Ho Young Lee, “Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride” Arch Pharm Res, 27(1), 31-34 (2004).
[26]. R. Hajian, N. Shams, M. Mohagheghian, “Study on the Interaction between Doxorubicin and Deoxyribonucleic Acid with the use of Methylene Blue as a Probe”. J Brazil Chem Soc 20, 1399-1405 (2009).
[27]. S. J. Garforth, T. W. Kim, M. A. Parniak, E. T. Kool, V. R. Prasad, “Site-directed mutagenesis in the fingers subdomain of HIV-1 reverse transcriptase reveals a specific role for the beta 3-beta 4 hairpin loop in dNTP selection”. Journal of Molecular Biology 365, 38-49 (2007).
[28]. K. Das, S. E. Martinez, J. D. Bauman, E. Arnold, “HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism”. Nat Struct Mol Biol 19, 253-259 (2012).
[29]. J. P. Ding et al., “Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 angstrom resolution”. Journal of Molecular Biology 284, 1095-1111 (1998).
[30]. L. A. Kohlstaedt, J. Wang, J. M. Friedman, P. A. Rice, T. A. Steitz, “Crystal-Structure at 3.5 Angstrom Resolution of Hiv-1 Reverse-Transcriptase Complexed with an Inhibitor”. Science 256, 1783-1790 (1992).
[31]. M. Mir, A. Homs, J. Samitier, “Integrated electrochemical DNA biosensors for lab-on-a-chip devices”. Electrophoresis 30, 3386-3397 (2009).
[32]. D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, “Electrochemical biosensors - Sensor principles and architectures”. Sensors-Basel 8, 1400-1458 (2008).
[33]. J. Wang, “Amperometric biosensors for clinical and therapeutic drug monitoring: a review”. J Pharmaceut Biomed 19, 47-53 (1999).
[34]. D. C. Apodaca, R. B. Pernites, R. Ponnapati, F. R. Del Mundo, R. C. Advincula, “Electropolymerized Molecularly Imprinted Polymer Film: EIS Sensing of Bisphenol A”. Macromolecules 44, 6669-6682 (2011).
[35]. T. Kondo, K. Honda, D. A. Tryk, A. Fujishima, “AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes”. Electrochim Acta 48, 2739-2748 (2003).
[36]. C. Gautier et al., “Hybridization-induced interfacial changes detected by non-Faradaic impedimetric measurements compared to Faradaic approach”. J Electroanal Chem 610, 227-233 (2007).
[37]. C. Montella, J. P. Diard, “New approach of electrochemical systems dynamics in the time domain under small-signal conditions: II. Modelling the responses of electrochemical systems by numerical inversion of Laplace transforms”. J Electroanal Chem 625, 156-164 (2009).
[38]. C. Berggren, G. Johansson, “Capacitance measurements of antibody-antigen interactions in a flow system”. Analytical Chemistry 69, 3651-3657 (1997).
[39]. C. Berggren, B. Bjarnason, G. Johansson, “An immunological interleukin-6 capacitive biosensor using perturbation with a potentiostatic step”. Biosensors & Bioelectronics 13, 1061-1068 (1998).
[40]. C. Berggren, B. Bjarnason, G. Johansson, “Capacitive biosensors”. Electroanal 13, 173-180 (2001).
[41]. C. Berggren, P. Stalhandske, J. Brundell and G. Johansson, Electroanalysis 11, 156-160(1999).
[42]. X. Fang, O. K. Tan, M. S. Tse and E. E. Ooi, Biosensors and Bioelectronics 25, 1137-42(2010).
[43]. C. H. Chu et al., “Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum”. Sci Rep-Uk 7, (2017).
[44]. T. Fujimoto, K. Awaga, “Electric-double-layer field-effect transistors with ionic liquids”. Physical Chemistry Chemical Physics 15, 8983-9006 (2013).
[45]. H. W. Du, X. Lin, Z. M. Xu, D. W. Chu, “Electric double-layer transistors: a review of recent progress”. J Mater Sci 50, 5641-5673 (2015).
[46]. M. V. Kamalakar, B. N. Madhushankar, A. Dankert, S. P. Dash, “Effect of high-k dielectric and ionic liquid gate on nanolayer black-phosphorus field effect transistors”. Appl Phys Lett 107. (2015).
[47]. S. H. Kim et al., “Electrolyte-Gated Transistors for Organic and Printed Electronics”. Advanced Materials 25, 1822-1846 (2013).
[48]. Yuan, H. et al. “Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors”. Journal of the American Chemical Society 132, 18402-18407 (2010).
[49]. Liu, N. et al. “Enhancing the pH sensitivity by laterally synergic modulation in dual-gate electric-double-layer transistors”. Applied Physics Letters 106, 073507 (2015).
[50]. Ye, P.D. et al. “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric”. Applied Physics Letters 86, 063501 (2005).
[51]. Gupta, S. et al. “Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors”. Biosensors and Bioelectronics 24, 505-511 (2008).
[52]. Y. L. Wang et al., “Botulinum toxin detection using AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 93, 262101 (2008).
[53]. Y. L. Wang et al., “Long-term stability study of botulinum toxin detection with AlGaN/GaN high electron mobility transistor based sensors”. Sensor Actuat B-Chem 146, 349-352 (2010).
[54]. Y. L. Wang et al., “Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 94, 243901 (2009).
[55]. K. H. Chen et al., “c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection”. Appl Phys Lett 92, 192103 (2008).
[56]. B. H. Chu et al., “Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nanorods grown on the gate region”. Appl Phys Lett 93, 042114 (2008).
[57]. S. C. Hung et al., “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 92, 193903 (2008).
[58]. C. Y. Chang et al., “CO(2) detection using polyethylenimine/starch functionalized AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 92, 232102 (2008).
[59]. Y. L. Wang et al., “Oxygen gas sensing at low temperature using indium zinc oxide-gated AlGaN/GaN high electron mobility transistors”. J Vac Sci Technol B 28, 376-379 (2010).
[60]. S. C. Hung et al., “Minipressure sensor using AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 94, 043903 (2009).
[61]. C. C. Huang et al., “AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study”. Biosensors & Bioelectronics 41, 717-722 (2013).
[62]. Y. W. Kang et al., “Human immunodeficiency virus drug development assisted with AlGaN/GaN high electron mobility transistors and binding-site models”. Appl Phys Lett 102, 173704 (2013).
[63]. Y. R. Hsu et al., “Investigation of C-terminal domain of SARS nucleocapsid protein-Duplex DNA interaction using transistors and binding-site models”. Sensor Actuat B-Chem 193, 334-339 (2014).
[64]. J. Y. Fang et al., “Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids”. J Appl Phys 114, 204503 (2013).
[65]. I. Burdallo, C. Jimenez-Jorquera, C. Fernandez-Sanchez, A. Baldi, “Integration of microelectronic chips in microfluidic systems on printed circuit board”. J Micromech Microeng 22, 105022 (2012).
[66]. M. Muluneh, D. Issadore, “A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics”. Lab on a Chip 14, 4552-4558 (2014).
[67]. A. De, J. van Nieuwkasteele, E. T. Carlen, A. van den Berg, “Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis”. Analyst 138, 3221-3229 (2013).
[68]. N. Lu et al., “Ultrasensitive Detection of Dual Cancer Biomarkers with Integrated CMOS-Compatible Nanowire Arrays”. Analytical Chemistry 87, 11203-11208 (2015).
[69]. J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations”. Microelectron Int 28, 8-22 (2011).
[70]. F. Niklaus et al., “Wafer bonding with nano-imprint resists as sacrificial adhesive for fabrication of silicon-on-integrated-circuit (SOIC) wafers in 3D integration of MEMS and ICs”. Sensor Actuat a-Phys 154, 180-186 (2009).
[71]. Y. Huang, A. J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors”. Lab on a Chip 13, 3929-3934 (2013).
[72]. H. S. Rye, A. N. Glazer, “Interaction of Dimeric Intercalating Dyes with Single-Stranded-DNA”. Nucleic Acids Research 23, 1215-1222 (1995).
[73]. M. Petersen, J. P. Jacobsen, “Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO modified on the benzothiazole ring”. Bioconjugate Chem 9, 331-340 (1998).
[74]. H. Ito, S. Uchiyama, N. Tabe, Y. J. Ihaya, “CD and UV Absorption Bandshapes of DNA Acridine-Orange Complexes - Influence of the Interactions of Purine Pyrimidine Base-Pairs with Dyes in Intercalated Model Complexes”. Chem Phys Lett 162, 103-109 (1989).
[75]. S. A. Islam, S. Neidle, B. M. Gandecha, J. R. Brown, “Experimental and Computer-Graphics Simulation Analyses of the DNA Interaction of 1,8-Bis-(2-Diethylaminoethylamino)-Anthracene-9,10-Dione, a Compound Modeled on Doxorubicin”. Biochem Pharmacol 32, 2801-2808 (1983).
[76]. H. Ohshima, “Theory of Colloid and Interfacial Electric Phenomena”, Amsterdam; Boston: Elsevier Academic Press, (2006).
[77]. T. Kowall, F. Foglia, L. Helm, A. E. Merbach, “Molecular-Dynamics Simulation Study of Lanthanide Ions Ln(3+) in Aqueous-Solution Including Water Polarization - Change in Coordination-Number from 9 to 8 Along the Series”. J Am Chem Soc 117, 3790-3799 (1995).
[78]. H. Long, A. Kudlay, G. C. Schatz, “Molecular dynamics studies of ion distributions for DNA duplexes and DNA clusters: Salt effects and connection to DNA melting”. Journal of Physical Chemistry B 110, 2918-2926 (2006).
[79]. C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, B. Norden, “Optical and Photophysical Properties of the Oxazole Yellow DNA Probes Yo and Yoyo”. J Phys Chem-Us 98, 10313-10321 (1994).
[80]. X. L. Yang, A. H. J. Wang, “Structural studies of atom-specific anticancer drugs acting on DNA”. Pharmacol Therapeut 83, 181-215 (1999).
[81]. M. Baginski, F. Fogolari, J. M. Briggs, “Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA”. Journal of Molecular Biology 274, 253-267 (1997).
[82]. V. Nadtochenko et al., “Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E-coli and TiO2”. J Photoch Photobio A 181, 401-407 (2006).
[83]. C. J. Huang, H. I. Lin, S. C. Shiesh, G. B. Lee, “Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX)”. Biosensors & Bioelectronics 25, 1761-1766 (2010).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *