|
[1]. X. Luo, J. J. Davis, “Electrical biosensors and the label free detection of protein disease biomarkers”. Chem Soc Rev 42, 5944-5962 (2013). [2]. R. N. Vyas, K. Li, B. Wang, “Modifying Randles circuit for analysis of polyoxometalate layer-by-layer films”. J Phys Chem B 114, 15818-15824 (2010). [3]. Vijayender Bhalla, Sandro Carrara, Priyanka Sharma, Yogesh Nangia, C. Raman Suri, “Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I”. Sensors and Actuators B, 161, 761-768 (2012). [4]. E. A. de Vasconcelos et al., “Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor”. Biosens Bioelectron 25, 870-876 (2009). [5]. K. C. Lin et al., “Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins”. Biosens Bioelectron 25, 2336-2342 (2010). [6]. Martin Hedstr¨om, Igor Yu. Galaev, Bo Mattiasson, “Continuous measurements of a binding reaction using a capacitive biosensor”. Biosensors and Bioelectronics, 21, 41-48 (2005). [7]. M. Dijksma, B. Kamp, J. C. Hoogvliet, and W. P. van Bennekom, “Development of an Electrochemical Immunosensor for Direct Detection of Interferon-ç at the Attomolar Level”. Anal. Chem., 73, 901-907 (2001). [8]. Wei Liao, Xinyan Tracy Cui, “Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF” Biosensors and Bioelectronics, 23, 218-224 (2007). [9]. Ritesh N. Vyas, Kuyen Li, and Bin Wang “Modifying Randles Circuit for Analysis of Polyoxometalate Layer-by-Layer Films”. J. Phys. Chem. B, 114, 15818-15824 (2010). [10]. C. Berggren, B. Bjarnason, G. Johansson, “Capacitive biosensors”. Electroanal 13, 173-180 (2001). [11]. Christine Berggren and Gillis Johansson “Capacitance Measurements of Antibody-Antigen Interactions in a Flow System”. Anal. Chem., 69, 3651 -3657 (1997). [12]. P. R. Van Rheenen, M. J. Mckelvy, And W. S. Glaunsingers “Synthesis and Characterization of Small Platinum Particles Formed by the Chemical Reduction of Chloroplatinic Acid”. Journal of Solid State Chemistry, 67, 151-169 (1987). [13]. C. J. Lim, S. Y. Lee, L. J. Kenney, J. Yan, “Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing”. Sci Rep 2, 509 (2012). [14]. N. Kaji, M. Ueda, Y. Baba, “Molecular stretching of long DNA in agarose gel using alternating current electric fields”. Biophys J, 82, 335-344 (2002). [15]. WAndr´e Germishuizen, Christoph W¨alti, Ren´e Wirtz, Michael B Johnston, Michael Pepper, AGiles Davies and Anton P J Middelberg. “Selective dielectrophoretic manipulation of surface-immobilized DNA molecules” Nanotechnology, 14, 896-902 (2003). [16]. S. Ferree, H. W. Blanch, “Electrokinetic stretching of tethered DNA”. Biophys J 85, 2539-2546 (2003). [17]. G. C. Randall, K. M. Schultz, P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices”. Lab Chip, 6, 516-525 (2006). [18]. T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow”. Science 268, 83-87 (1995). [19]. D. Long, J. L. Viovy, A. Ajdari, “Stretching DNA with electric fields revisited”. Biopolymers 39, 755-759 (1996). [20]. Martins Vanags, Janis Kleperis and Gunars Bajars. “Water Electrolysis with Inductive Voltage Pulses” Electrolysis, Dr. Janis Kleperis (Ed.), ISBN: 978-953-51-0793-4, InTech, DOI: 10.5772/52453. (2012) [21]. C. Berggren, P. Stalhandske, J. Brundell, G. Johansson, “A feasibility study of a capacitive biosensor for direct detection of DNA hybridization”. Electroanal 11, 156-160 (1999). [22]. Xiaoqin Fang, Ooi Kiang Tan, Man Siu Tse, Eng Eong Ooi, “A label-free immunosensor for diagnosis of dengue infection with simple electrical measurements” Biosensors and Bioelectronics, 25, 1137–1142 (2010). [23]. Christine Berggren, Bjarni Bjarnason, Gillis Johansson “An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step” Biosensors & Bioelectronics, 13, 1061-1068 (1998). [24]. Mengsu Yang,* Hellas C. M. Yau, and Hing Leung Chan, “Adsorption Kinetics and Ligand-Binding Properties of Thiol-Modified Double-Stranded DNA on a Gold Surface” Langmuir, 14, 6121-6129 (1998). [25]. Younghee Hahn and Ho Young Lee, “Electrochemical Behavior and Square Wave Voltammetric Determination of Doxorubicin Hydrochloride” Arch Pharm Res, 27(1), 31-34 (2004). [26]. R. Hajian, N. Shams, M. Mohagheghian, “Study on the Interaction between Doxorubicin and Deoxyribonucleic Acid with the use of Methylene Blue as a Probe”. J Brazil Chem Soc 20, 1399-1405 (2009). [27]. S. J. Garforth, T. W. Kim, M. A. Parniak, E. T. Kool, V. R. Prasad, “Site-directed mutagenesis in the fingers subdomain of HIV-1 reverse transcriptase reveals a specific role for the beta 3-beta 4 hairpin loop in dNTP selection”. Journal of Molecular Biology 365, 38-49 (2007). [28]. K. Das, S. E. Martinez, J. D. Bauman, E. Arnold, “HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism”. Nat Struct Mol Biol 19, 253-259 (2012). [29]. J. P. Ding et al., “Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 angstrom resolution”. Journal of Molecular Biology 284, 1095-1111 (1998). [30]. L. A. Kohlstaedt, J. Wang, J. M. Friedman, P. A. Rice, T. A. Steitz, “Crystal-Structure at 3.5 Angstrom Resolution of Hiv-1 Reverse-Transcriptase Complexed with an Inhibitor”. Science 256, 1783-1790 (1992). [31]. M. Mir, A. Homs, J. Samitier, “Integrated electrochemical DNA biosensors for lab-on-a-chip devices”. Electrophoresis 30, 3386-3397 (2009). [32]. D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, “Electrochemical biosensors - Sensor principles and architectures”. Sensors-Basel 8, 1400-1458 (2008). [33]. J. Wang, “Amperometric biosensors for clinical and therapeutic drug monitoring: a review”. J Pharmaceut Biomed 19, 47-53 (1999). [34]. D. C. Apodaca, R. B. Pernites, R. Ponnapati, F. R. Del Mundo, R. C. Advincula, “Electropolymerized Molecularly Imprinted Polymer Film: EIS Sensing of Bisphenol A”. Macromolecules 44, 6669-6682 (2011). [35]. T. Kondo, K. Honda, D. A. Tryk, A. Fujishima, “AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes”. Electrochim Acta 48, 2739-2748 (2003). [36]. C. Gautier et al., “Hybridization-induced interfacial changes detected by non-Faradaic impedimetric measurements compared to Faradaic approach”. J Electroanal Chem 610, 227-233 (2007). [37]. C. Montella, J. P. Diard, “New approach of electrochemical systems dynamics in the time domain under small-signal conditions: II. Modelling the responses of electrochemical systems by numerical inversion of Laplace transforms”. J Electroanal Chem 625, 156-164 (2009). [38]. C. Berggren, G. Johansson, “Capacitance measurements of antibody-antigen interactions in a flow system”. Analytical Chemistry 69, 3651-3657 (1997). [39]. C. Berggren, B. Bjarnason, G. Johansson, “An immunological interleukin-6 capacitive biosensor using perturbation with a potentiostatic step”. Biosensors & Bioelectronics 13, 1061-1068 (1998). [40]. C. Berggren, B. Bjarnason, G. Johansson, “Capacitive biosensors”. Electroanal 13, 173-180 (2001). [41]. C. Berggren, P. Stalhandske, J. Brundell and G. Johansson, Electroanalysis 11, 156-160(1999). [42]. X. Fang, O. K. Tan, M. S. Tse and E. E. Ooi, Biosensors and Bioelectronics 25, 1137-42(2010). [43]. C. H. Chu et al., “Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum”. Sci Rep-Uk 7, (2017). [44]. T. Fujimoto, K. Awaga, “Electric-double-layer field-effect transistors with ionic liquids”. Physical Chemistry Chemical Physics 15, 8983-9006 (2013). [45]. H. W. Du, X. Lin, Z. M. Xu, D. W. Chu, “Electric double-layer transistors: a review of recent progress”. J Mater Sci 50, 5641-5673 (2015). [46]. M. V. Kamalakar, B. N. Madhushankar, A. Dankert, S. P. Dash, “Effect of high-k dielectric and ionic liquid gate on nanolayer black-phosphorus field effect transistors”. Appl Phys Lett 107. (2015). [47]. S. H. Kim et al., “Electrolyte-Gated Transistors for Organic and Printed Electronics”. Advanced Materials 25, 1822-1846 (2013). [48]. Yuan, H. et al. “Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors”. Journal of the American Chemical Society 132, 18402-18407 (2010). [49]. Liu, N. et al. “Enhancing the pH sensitivity by laterally synergic modulation in dual-gate electric-double-layer transistors”. Applied Physics Letters 106, 073507 (2015). [50]. Ye, P.D. et al. “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric”. Applied Physics Letters 86, 063501 (2005). [51]. Gupta, S. et al. “Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors”. Biosensors and Bioelectronics 24, 505-511 (2008). [52]. Y. L. Wang et al., “Botulinum toxin detection using AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 93, 262101 (2008). [53]. Y. L. Wang et al., “Long-term stability study of botulinum toxin detection with AlGaN/GaN high electron mobility transistor based sensors”. Sensor Actuat B-Chem 146, 349-352 (2010). [54]. Y. L. Wang et al., “Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 94, 243901 (2009). [55]. K. H. Chen et al., “c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection”. Appl Phys Lett 92, 192103 (2008). [56]. B. H. Chu et al., “Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nanorods grown on the gate region”. Appl Phys Lett 93, 042114 (2008). [57]. S. C. Hung et al., “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 92, 193903 (2008). [58]. C. Y. Chang et al., “CO(2) detection using polyethylenimine/starch functionalized AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 92, 232102 (2008). [59]. Y. L. Wang et al., “Oxygen gas sensing at low temperature using indium zinc oxide-gated AlGaN/GaN high electron mobility transistors”. J Vac Sci Technol B 28, 376-379 (2010). [60]. S. C. Hung et al., “Minipressure sensor using AlGaN/GaN high electron mobility transistors”. Appl Phys Lett 94, 043903 (2009). [61]. C. C. Huang et al., “AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study”. Biosensors & Bioelectronics 41, 717-722 (2013). [62]. Y. W. Kang et al., “Human immunodeficiency virus drug development assisted with AlGaN/GaN high electron mobility transistors and binding-site models”. Appl Phys Lett 102, 173704 (2013). [63]. Y. R. Hsu et al., “Investigation of C-terminal domain of SARS nucleocapsid protein-Duplex DNA interaction using transistors and binding-site models”. Sensor Actuat B-Chem 193, 334-339 (2014). [64]. J. Y. Fang et al., “Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids”. J Appl Phys 114, 204503 (2013). [65]. I. Burdallo, C. Jimenez-Jorquera, C. Fernandez-Sanchez, A. Baldi, “Integration of microelectronic chips in microfluidic systems on printed circuit board”. J Micromech Microeng 22, 105022 (2012). [66]. M. Muluneh, D. Issadore, “A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics”. Lab on a Chip 14, 4552-4558 (2014). [67]. A. De, J. van Nieuwkasteele, E. T. Carlen, A. van den Berg, “Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis”. Analyst 138, 3221-3229 (2013). [68]. N. Lu et al., “Ultrasensitive Detection of Dual Cancer Biomarkers with Integrated CMOS-Compatible Nanowire Arrays”. Analytical Chemistry 87, 11203-11208 (2015). [69]. J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations”. Microelectron Int 28, 8-22 (2011). [70]. F. Niklaus et al., “Wafer bonding with nano-imprint resists as sacrificial adhesive for fabrication of silicon-on-integrated-circuit (SOIC) wafers in 3D integration of MEMS and ICs”. Sensor Actuat a-Phys 154, 180-186 (2009). [71]. Y. Huang, A. J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors”. Lab on a Chip 13, 3929-3934 (2013). [72]. H. S. Rye, A. N. Glazer, “Interaction of Dimeric Intercalating Dyes with Single-Stranded-DNA”. Nucleic Acids Research 23, 1215-1222 (1995). [73]. M. Petersen, J. P. Jacobsen, “Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO modified on the benzothiazole ring”. Bioconjugate Chem 9, 331-340 (1998). [74]. H. Ito, S. Uchiyama, N. Tabe, Y. J. Ihaya, “CD and UV Absorption Bandshapes of DNA Acridine-Orange Complexes - Influence of the Interactions of Purine Pyrimidine Base-Pairs with Dyes in Intercalated Model Complexes”. Chem Phys Lett 162, 103-109 (1989). [75]. S. A. Islam, S. Neidle, B. M. Gandecha, J. R. Brown, “Experimental and Computer-Graphics Simulation Analyses of the DNA Interaction of 1,8-Bis-(2-Diethylaminoethylamino)-Anthracene-9,10-Dione, a Compound Modeled on Doxorubicin”. Biochem Pharmacol 32, 2801-2808 (1983). [76]. H. Ohshima, “Theory of Colloid and Interfacial Electric Phenomena”, Amsterdam; Boston: Elsevier Academic Press, (2006). [77]. T. Kowall, F. Foglia, L. Helm, A. E. Merbach, “Molecular-Dynamics Simulation Study of Lanthanide Ions Ln(3+) in Aqueous-Solution Including Water Polarization - Change in Coordination-Number from 9 to 8 Along the Series”. J Am Chem Soc 117, 3790-3799 (1995). [78]. H. Long, A. Kudlay, G. C. Schatz, “Molecular dynamics studies of ion distributions for DNA duplexes and DNA clusters: Salt effects and connection to DNA melting”. Journal of Physical Chemistry B 110, 2918-2926 (2006). [79]. C. Carlsson, A. Larsson, M. Jonsson, B. Albinsson, B. Norden, “Optical and Photophysical Properties of the Oxazole Yellow DNA Probes Yo and Yoyo”. J Phys Chem-Us 98, 10313-10321 (1994). [80]. X. L. Yang, A. H. J. Wang, “Structural studies of atom-specific anticancer drugs acting on DNA”. Pharmacol Therapeut 83, 181-215 (1999). [81]. M. Baginski, F. Fogolari, J. M. Briggs, “Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA”. Journal of Molecular Biology 274, 253-267 (1997). [82]. V. Nadtochenko et al., “Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E-coli and TiO2”. J Photoch Photobio A 181, 401-407 (2006). [83]. C. J. Huang, H. I. Lin, S. C. Shiesh, G. B. Lee, “Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX)”. Biosensors & Bioelectronics 25, 1761-1766 (2010).
|