帳號:guest(18.224.57.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林德勛
作者(外文):Lin, Te-Hsun
論文名稱(中文):多光束雷射干涉微影系統開發與優化
論文名稱(外文):The Development and Optimization of the Multi-Beam Laser Interference Lithography System
指導教授(中文):傅建中
指導教授(外文):Fu, Chien-Chung
口試委員(中文):宋震國
李永春
郭浩中
鄭惟元
口試委員(外文):Sung, Cheng-Kuo
Lee, Yung-Chun
Kuo, Hao-Chung
Cheng, Wei-Yuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033814
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:113
中文關鍵詞:雷射干涉微影技術多光束干涉微影莫爾條紋缺陷
外文關鍵詞:Laser interference lithographyMulti-beam LILMoiré pattern defects
相關次數:
  • 推薦推薦:0
  • 點閱點閱:129
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在雷射干涉微影技術(Laser Interference Lithography)中,亦分數種實行方式進行微影曝光,其根據先前研究成果中,在進行二微週期結構圖案化定義,其利用多光束干涉微影系統(Multi-beam LIL)之產能比多次曝光系統(Multi-exposure LIL)還要好,因此,本研究進行多光束雷射干涉微影系統設計與開發。
我們整合許多基礎理論,包含光干涉理論、駐波效應及光阻特性,並且利用Matlab建立雷射干涉微影製程之數學模型,可以準確地計算出光阻所需要的曝光時間,並減少微影製程測試時間,提升曝光效率。
另外,雷射干涉微影技術之光干涉特性,導致在微影製程中,特別容易受到環境振動影響而產生莫爾條紋缺陷。因此,本研究提出兩種方法,針對環境中之振動影響來改善,並提高曝光過程中的品質。
The laser interference lithography (LIL) has two ways to fabricate the 2D periodic structures. The first method is multi-exposure LIL (2-beam LIL with double exposures), and the second method is multi-beam LIL (3-beam interference with single exposure). After simulation results, that research may have verified that multi-beam LIL has significantly better throughput than multi-exposure LIL. Therefore, this research design and develop a multi-beam LIL system.
We integrate multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.
In addition, LIL is very sensitive to the light source and the vibration. When there is a vibration source in the exposure environment, the standing wave distribution on the substrate will be affected by the vibration and move in a certain angle. As a result, Moiré fringe defects occur on the exposure result. In order to eliminate the effect of the vibration, we propose two methods for eliminating the vibrations from environment and improve the quality of the exposure process.
目錄 III
圖目錄 V
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1. 雷射干涉微影型式 3
1.3 研究動機與目的 11
1.4 研究方法 15
第二章 雷射干涉微影理論分析 16
2.1 雷射干涉微影原理 16
2.1.1 波動原理 16
2.1.2 多光干涉原理 20
2.1.3 對比度影響 22
2.2 駐波效應分析原理 29
2.3 光阻特性分析原理 36
2.4 完整數學模型建立 43
2.5 實際微影製程與整合理論差異 48
第三章 雷射干涉微影系統設計 56
3.1 系統設計概念 56
3.2 系統元件介紹 56
3.3 多光束干涉微影系統安裝流程 63
3.4 週期性結構圖案設計流程 65
第四章 多光束系統優化 67
4.1環境振動之影響 67
4.2垂直型莫爾條紋缺陷 70
4.3平行型莫爾條紋缺陷 73
4.4 多光束系統之環境振動影響 75
4.5 分析程式與實際振幅的耦合 79
4.6 抑制振動方法 81
第五章 研究結論與成果 94
5.1 前言 94
5.2 理論分析結成果 94
5.3 環境振動改善成果 98
5.4 消除環境振動成果 100
第六章 未來展望 102
6.1 前言 102
6.2 未來規劃與建議 102
參考文獻 105

[1] L Wang, H H Solak and Y Ekinci, “Fabrication of high-resolution large-area patterns using EUV interference lithography in a scan-exposure mode”, Nanotechnology, Volume 23, Number 30, 10 July (2012).
[2] H.H. Solak, C. David, J. Gobrecht, L. Wang and F. Cerrina, “Four-wave EUV interference lithography”, Micro- and Nano-Engineering, Pages 77–82, Volumes 61–62, July (2002).
[3] H.H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S.O. Kim and P.F. Nealey, “Sub-50 nm period patterns with EUV interference lithography”, Proceedings of the 28th International Conference on Micro- and Nano-Engineering, Pages 56–62, Volumes 67–68, June (2003).
[4] Jin-Sung Kim, Ki-Dong Lee, Seh-Won Ahn, Sang Hoon Kim, Joo-Do Park, Sung-Eun Lee , Sang-Soo Yoon, “Fabrication of Nanowire Polarizer by Using Nanoimprint Lithography”, Journal of the Korean Physical Society, Vol. 45, pp. S890S892, (2004).
[5] Masao Miyake, Ying-Chieh Chen, Paul V. Braun, Pierre Wiltzius, “Fabrication of Three-Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition”, Volume 21, Issue 29, pages 3012–3015, August 7 (2009).
[6] D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, "Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography", Appl. Phys. Lett. 94, 011101, (2009).
[7] Yuankun Lin, Ahmad Harb, Karen Lozano, Di Xu, and K. P. Chen, "Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element", Optics Express, Vol. 17, Issue 19, pp. 16625-16631, (2009).
[8] Jae Bum Kim, Sang-Mook Kim, Young Woo Kim, Sung-Ku Kang, Seong-Ran Jeon, Nam Hwang1, Yeon-Jo Choi, and Chang Sub Chung, “Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Volcano-Shaped Patterned Sapphire Substrates”, Japanese Journal of Applied Physics, Volume 49, 20 April (2010).
[9] Sang-Mook Kim, Hwa Sub Oh, Jong Hyeob Baek, Kwang-Ho Lee, Gun Young Jung, Jae-Ho Song, Ho-Jong Kim, Byung-Jun Ahn, Dong Yanqun, and Jung-Hoon Song, “Effects of Patterned Sapphire Substrates on Piezoelectric Field in Blue-Emitting InGaN Multiple Quantum Wells”, Electron Device Letters, IEEE, Volume 31, Issue 8, Aug (2010).
[10] Q. Xiea, M.H. Hong, H.L. Tan, G.X. Chen, L.P. Shi and T.C. Chong, "Fabrication of nanostructures with laser interference lithography", Journal of Alloys and Compounds, Pages 261-264, Volume 449, Issues 1-2, 31 January (2008)
[11] Johannes de Boor, Dong Sik Kim, Volker Schmid, "Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer", OPTICS LETTERS,Vol. 35, No. 20, 15 October (2010)
[12] Xinghui Li, Wei Gao, Yuki Shimizu and So Ito, “A two-axis Lloyd's mirror interferometer for fabrication of two-dimensional diffraction gratings”, CIRP Annals - Manufacturing Technology, Volume 63, Issue 1, Pages 461–464, 27 March (2014).
[13] Johannes de Boor, Nadine Geyer, Ulrich Gösele, and Volker Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning”, Optics Letters, Volume 34, Issue 12, Page 1783-1785,15 Jun (2009)

[14] Vaida Auzelyte, Christian Dais, Patrick Farquet, Detlev Grützmacher, Laura J. Heyderman, Feng Luo, Sven Olliges, Celestino Padeste, Pratap K. Sahoo, Tom Thomson, Andrey Turchanin, Christian David and Harun H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut”, Journal of Micro/Nanolithography MEMS and MOEMS, Volume 8, Issue 2, 27 April (2009).
[15] Bernd Terhalle, Andreas Langner, Birgit Päivänranta and Yasin Ekinci, “Advanced holographic methods in extreme ultraviolet interference lithography”, SPIE Proceedings, Volume 8102, Nanoengineering of Interfaces, September 23 (2011).
[16] Li Wang, Bernd Terhalle, Vitaliy A. Guzenko, Alan Farhan and Mohamad Hojeij, “Generation of high-resolution kagome lattice structures using extreme ultraviolet interference lithography”, Applied Physics Letters, Volume 101, Number 9 (2012).
[17] A Langner, B Päivänranta, B Terhalle and Y Ekinci1, “Fabrication of quasiperiodic nanostructures with EUV interference lithography”, Nanotechnology, Volume 23, Number 10, 24 February (2012).
[18] Birgit P¨aiv¨anranta, Andreas Langner, Eugenie Kirk, Christian David and Yasin Ekinci, “Sub-10 nm patterning using EUV interference lithography”, Nanotechnology, Volume 22, Number 37, 19 August (2011).
[19] Michael E. Walsh, “On the design of lithographic interferometers and their application”, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, (2004)
[20] L. Zeng and L. Li, “Optical mosaic gratings made by consecutive, phase-interlocked, holographic exposures using diffraction from latent fringes”, Optics Letters, Vol. 32, Issue 9, pp. 1081-1083, (2007)

[21] Maya Farhoud, Juan Ferrera, Anthony J. Lochtefeld, T. E. Murphy Mark L. Schattenburg, J. Carter, C. A. Ross, Henry I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist”, Journal of Vacuum Science & Technology B, Vol. 17, No.6, Nov/Dec (1999).
[22] Hwang M, Smith Henry I, Schattenburg M.L, Bae J.M, Youcef-Toumi K, Ross, C.A, “Fabrication of large area nanostructured magnets by interferometric lithography”, IEEE Transactions on Magnetics, Volume 34, Issue 4, JULY (1998).
[23] Mark L. Schattenburg, Carl G. Chen, Ralf K. Heilmann, Paul T. Konkola and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams”, Proceedings of SPIE, Volume 4485, (2002).
[24] Erik H. Anderson, Henry I. Smith and Mark L. Schattenburg, “Holographic lithography”, US Patent 5142385 A, Jan 9, (1991).
[25] Carl G. Chen, Paul T. Konkola, Ralf K. Heilmann, Chulmin Joo and Mark L. Schattenburg, “Nanometer-accurate grating fabrication with scanning beam interference lithography”, SPIE Proceedings, Volume 4936, 1 November (2002).
[26] M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and Henry I. Smith, “Sub-100 nm metrology using interferometrically produced fiducials”, Journal of Vacuum Science & Technology B, Volume 17, Issue 6, (1999).
[27] Carl G. Chen, Paul T. Konkola, Ralf K. Heilmann, G. S. Pati, and Mark L. Schattenburg, “Image metrology and system controls for scanning beam interference lithography”, Journal of Vacuum Science & Technology B, Volume 19, (2001).
[28] Paul T. Konkola, Carl G. Chen, Ralf K. Heilmann, and Mark L. Schattenburg, “Beam steering system and spatial filtering applied to interference lithography”, Journal of Vacuum Science & Technology B, Volume 18, (2000).

[29] Carl G. Chen, Ralf K. Heilmann, Chulmin Joo, Paul T. Konkola, G. S. Pati, and Mark L. Schattenburg, “Beam alignment for scanning beam interference lithography”, Journal of Vacuum Science & Technology B, Volume 20, (2002).
[30] Juan C. Montoya, Chih-Hao Chang, Ralf K. Heilmann, and Mark L. Schattenburg, “Doppler writing and linewidth control for scanning beam interference lithography”, Journal of Vacuum Science & Technology B, Volume 23, (2005).
[31] ‬Y‭. ‬Sun‭, ‬D‭. ‬Mikolas‭, ‬E‭. ‬Chang‭, ‬P‭. ‬Lin and‭ ‬C‭. ‬Fu‭‬‭, ‬“Lloyd’s Mirror Interferometer Using a Single-Mode Fiber Spatial Filter”‭, ‬Journal of Vacuum Science and
[32] En-Chiang Chang, David Mikolas, Pao-Te Lin, Tony Schenk, Chien-Li Wu, Cheng-Kuo Sung and Chien-Chung Fu, “Improving feature size uniformity from interference lithography systems with non-uniform intensity profiles”, Nanotechnology, Volume 24, (2013).
[33] Haiyan Wang, Shizhong Zhou, Zhiting Lin, Xiaosong Hong and Guoqiang Li, “Enhance Light Emitting Diode Light Extraction Efficiency by an Optimized Spherical Cap-Shaped Patterned Sapphire Substrate”, Japanese Journal of Applied Physics, Volume 52, Number 9R, 20 August (2013).
[34] Yu-Sheng Lin and J. Andrew Yeh, “GaN-Based Light-Emitting Diodes Grown on Nanoscale Patterned Sapphire Substrates with Void-Embedded Cortex-Like Nanostructures”, Applied Physics Express, Volume 4, Number 9, 25 August (2011).
[35] Jae Bum Kim, Sang-Mook Kim, Young Woo Kim, Sung-Ku Kang, Seong-Ran Jeon, Nam Hwang, Yeon-Jo Choi and Chang Sub Chung, “Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Volcano-Shaped Patterned Sapphire Substrates”, Japanese Journal of Applied Physics, Volume 49, Number 4R, 20 April (2010).

[36] Sang-Mook Kim, Hwa Sub Oh, Kwang Cheol Lee and Jong Hyeob Baek, “Light extraction behavior of GaN-based light-emitting diodes with different substrate conditions; nano-size and micro-sized sapphire substrates”, Communications and Photonics Conference and Exhibition (ACP) 2010 Asia, Pages: 160-161, 8-12 Dec. (2010).
[37] Sang-Mook Kim, Hwa Sub Oh, Jong Hyeob Baek, Kwang-Ho Lee, Gun Young Jung, Jae-Ho Song, Ho-Jong Kim, Ahn, Byung-Jun, Dong Yanqun and Song Jung-Hoon, “Effects of Patterned Sapphire Substrates on Piezoelectric Field in Blue-Emitting InGaN Multiple Quantum Wells”, Electron Device Letters IEEE, Volume 31, Issue 8, Pages: 842-844, 1 Jul (2010).
[38] Joonhee Lee, Sungmo Ahn, Sihan Kim, Dong-Uk Kim, Heonsu Jeon, Seung-Jae Lee and Jong Hyeob Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission”, Applied Physics Letters, Volume 94, Issue 10, 10 Mar (2009).
[39] Chia-Hua Chan, Chia-Hung Hou, Chih-Kai Huang, Tsing-Jen Chen, Shao-Ze Tseng, Hung-Ta Chien, Cheng-Huang Kuo, Kuo-Huang Hsieh, Yen-Ling Tsai, Kuei-Chu Hsu and Chii-Chang Chen, “Patterning Periodical Motif on Substrates Using Monolayer of Microspheres: Application in GaN Light-Emitting Diodes”, Japanese Journal of Applied Physics, Volume 48, Number 2R, 5 February (2009).
[40] Chia-Hung Hou, Shao-Ze Tseng, Chia-Hua Chan, Tsing-Jen Chen, Hung-Ta Chien, Fu-Li Hsiao, Hua-Kung Chiu, Chien-Chieh Lee, Yen-Ling Tsai and Chii-Chang Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres”, Applied Physics Letters, Volume 95, Issue 13, 28 Sep (2009).


[41] Chien-Chih Kao, Yan-Kuin Su, Chuing-Liang Lin and Jian-Jhong Chen, “The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates”, Applied Physics Letters, Volume 97, Issue 2, 15 Jul (2010).
[42] Jongjin Jang, Kwanhyun Lee, Junghwan Hwang, Joocheol Jung, Seunga Lee, Kyuho Lee, Bohyun Kong, Hyunghoun Cho and Okhyun Nam, “Improvement of crystal quality and optical property in (11−22) semipolar InGaN/GaN LEDs grown on patterned m-plane sapphire substrate”, Journal of Crystal Growth, Volume 361, Pages: 166-170, 15 December (2012).
[43] Seunga Lee, Jongjin Jang, Kwan-Hyun Lee, Jung-Hwan Hwang, Joocheol Jeong and Okhyun Nam, “Effect of defects on the luminescence in semipolar InGaN/GaN quantum wells on planar and patterned m-plane sapphire substrate”, physica status solidi (a), Volume 209, Issue 8, pages: 1526-1529, August (2012).
[44] Geunho Yoo, Hyunsung Park, Donghun Lee, Hyoungjin Lim, Seunga Lee, Bohyun Kong, Hyungkoun Cho, Hyoungwon Park, Heon Lee and Okhyun Nam, “Characterization of a-plane GaN layers grown on patterned r-sapphire substrate by metal organic chemical vapor deposition”, Current Applied Physics, Volume 11, Issue 4, Supplement, Pages: S90-S94, July (2011).
[45] YanKuin Su, ChunYuan Huang, JianJhong Chen, ChienChih Kao and ChunFu Tsai, “Improvement of extraction efficiency for GaN-based light emitting diodes”, Science China Technological Sciences, Volume 53, Issue 2, Pages: 322-325, February (2010).




[46] Hwa Sub Oh ; Kwang Cheol Lee ; Jong Hyeob BaekHaiyong Gao, Fawang Yan, Yang Zhang, Jinmin Li, Yiping Zeng and Guohong Wang, “Fabrication of nano-patterned sapphire substrates and their application to the improvement of the performance of GaN-based LEDs”, Accepted by Japanese Journal of Applied Physics, Volume 41, Number 11, 16 May (2008).
[47] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu and M. H. Pan, “Fabrication of Pyramidal Patterned Sapphire Substrates for High-Efficiency InGaN-Based Light Emitting Diodes”, Journal of The Electrochemical Society, 153(8) G765-G770, (2006).
[48] T. Lin, T. Huang, Y. Yang, K. Tseng, and C. Fu, “Throughput comparison of multiexposure and multibeam laser interference lithography on nanopatterned sapphire substrate process” Accepted by Japanese Journal of Applied Physics, Volume 53, Number 6S, 22 May (2014).
[49] Ivan B. Divliansky, Atsushi Shishido, Iam-Choon Khoo, and Theresa S. Mayer, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe”, Applied Physics Letters, Vol. 79, No 21, (2001)
[50] Frank J. van Soest, Henk A. G. M. van Wolferen, Hugo J. W. M. Hoekstra, René M. de Ridder, Kerstin Wörhoff and Paul V. Lambeck, “Laser Interference Lithography with Highly Accurate Interferometric Alignment”, Japanese Journal of Applied Physics, Volume 44, Part 1, Number 9A, 8 September (2005).
[51] Martin Maldovan , Edwin L. Thomas, “Periodic Materials and Interference Lithography for Photonics, Phononics and Mechanics”, John Wiley & Sons Inc (2008)
[52] Chris A. Mack, “Analytical Expression for the Standing Wave Intensity in Photoresist”, Applied Optics, Vol. 25, No. 12, pp. 1958-1961, 15 June (1986).

[53] J. E. Korka, “Standing Waves in Photoresists”, Applied Optics, Vol. 9, Issue 4, pp. 969-970 (1970).
[54] F. H. Dill, A. R. Neureuther, J. A. Tuttle and E. J. Walker, “Modeling Projection Printing of Positive Photoresists,” IEEE Trans. Electr. Dev, ED-22(7), pp. 456, (1975).
[55] Chris A. Mack, “PROLITH: A Comprehensive Optical Lithography Model”, SPIE Vol. 538 Optical Microlithography IV, July 28 (1985).
[56] Dill, F.H., Hornberger, W.P., Hauge, Peter S. and Shaw Jane M., “Characterization of positive photoresist”, Electron Devices, IEEE Transactions, Volume 22, Issue 7, Pages 445-452, Jul (1975).
[57] S. V. Babu and E. Barouch, ”Exact Solution of Dill's Model Equations for Positive Photoresist Kinetics”, IEEE Electr. Dev. Letters, EDL-7(4), pp. 252, (1986).
[58] Dawon Kahng, “Silicon integrated circuits. Part C : advances in materials and device research”, Academic, (1985).
[59] Y. Sun, D. Mikolas, E. Chang, P. Lin and C. Fu, “Lloyd’s Mirror Interferometer Using a Single-Mode Fiber Spatial Filter”, Journal of Vacuum Science and Technology B, Vol 31, pp.021604, (2013).
[60] Y. Yang, H. Mai, T. Lin, Y. Dzeng and C. Fu, “Eliminate the vibration defect for laser interference lithography using an optical chopper system”, Proceedings Volume 10147, Optical Microlithography XXX, 101471G, (2017).
[61] T. Lin, Y. Yang, and C. Fu, “Integration of multiple theories for the simulation of laser interference lithography processes”, Nanotechnology, Volume 28, Number 47, (2017).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *