帳號:guest(18.118.146.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫敏勝
作者(外文):Suen, Min Sheng
論文名稱(中文):新型可撓性觸覺感測器之製造與分析
論文名稱(外文):Fabrication and Characteristic Analysis of Novel Flexible Tactile Sensors
指導教授(中文):陳榮順
指導教授(外文):Chen, Rongshun
口試委員(中文):陳宗麟
方維倫
羅丞曜
林孟儒
口試委員(外文):Chen, Tsung-Lin
Fang, Wei-Leun
Lo, Cheng-Yao
Lin, Meng-Ju
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:100033811
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:126
中文關鍵詞:可撓性觸覺
外文關鍵詞:flexibletactile
相關次數:
  • 推薦推薦:0
  • 點閱點閱:306
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
觸覺感測器用途廣泛,常用於可撓式觸控面板、人工電子皮膚、機器手臂、及人工義肢等應用上,使得可撓性觸覺感測器漸漸地備受矚目。可撓性觸覺感測器具有容易彎曲之基底、製程容易且可以大面積製造及成本較低等優點,透過觸覺感測器可模擬人類皮膚,藉以感測各種不同之物理量。
本論文研究兩種不同感測機制之新型可撓性觸覺感測器。第一部分是利用氧化鋅奈米柱陣列設計之複合功能觸覺感測器,藉由水溶液法成長氧化鋅奈米柱陣列,進而模仿人體皮膚之感覺受器。將兩片成長完成一維氧化鋅奈米柱陣列之PDMS基板相互結合,使上下兩片氧化鋅奈米柱陣列形成交互鏈鎖結構,藉由施加壓力使奈米柱間之接觸電阻改變,感測動態與靜態力之外部刺激反應。同時利用ZnO之半導體熱阻特性以量測外部之環境溫度,製作可撓性複合功能之壓阻式觸覺及溫度感測器。再將交互鏈鎖結構做成3 × 3觸覺感測陣列與LabVIEW人機界面結合,證實達到多點觸控之功能。第二部分則是研發新型電容式觸覺感測器,設計概念是使用五個同心形狀電極作為一個感測單元,使正向力和剪切力解耦合,量測時不受兩者互相影響,可以正確的量測到正向力或是剪切力,減少因受到合成力所導致的測量誤差,同時,因為此電容感測器具有特殊電極形狀的設計,可檢測扭轉的力矩角度,期待未來可用於手機、平板上,做為旋轉搖桿或是機器手臂上扭力檢測。
Due to their low cost, bendable and stretchable characteristics, flexible tactile sensors are widely used in touch panel, prostheses, robots, and artificial electronic skin (e-skin) to mimic the sensing capabilities of human skin.
In this thesis, two kinds of novel flexible tactile sensors with different sensing mechanisms, piezoresistivity and capacitance, are developed. In the first part, the proposed piezoresistive tactile sensor is investigated. It utilizes the interlocked structures with high-aspect-ratio ZnO nanorod arrays to increase the available conducting paths and thus to increase the contact areas for electrical conduction between two electrodes. As a result, the sensitivity is significantly improved. To become a multifunctional tactile sensor, except for measuring the static and dynamic forces, the developed tactile sensor can be employed to detect the environmental temperature using the characteristics of the thermal resistance of ZnO nanorods. Furthermore, with 3 × 3 sensor units, the piezoresistive tactile sensor can provide high resolution and identify the difference in the strengths of multiple-touch forces applied. In the second part, a novel capacitive tactile sensor has been proposed. The perceptive unit of tactile sensor consists of five sensing electrodes to detect three-axial force. Each capacitive sensing unit comprises a pair of the same shape but different size electrodes (top electrode and bottom electrode). By the unique design of electrode shapes, the developed tactile sensor is able to detect the applied normal force and the shear force, to have the capability of decoupling the applied normal and shear force and the torsion sensing. In the future, the proposed tactile sensor with the ability of sensing torque can be utilized in the wearable devices, flexible interface in the touch panel, and bionic robotic skins.
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 文獻回顧 4
1.3.1 壓阻式感測器 6
1.3.2 壓電式感測器 13
1.3.3 電容式感測器 16
1.4 論文架構 22
第二章 理論基礎與原理 24
2.1 氧化鋅奈米柱交互鏈鎖結構之觸覺感測器 24
2.1.1 氧化鋅基本結構與特性 24
2.1.2 氧化鋅摻雜鋁薄膜特性 28
2.1.3 壓阻感測原理 28
2.1.4 溫度感測原理 29
2.1.5 鍍膜製程方法 30
2.1.6 水溶液法合成一維氧化鋅奈米柱 31
2.2 電容式觸覺感測器之基礎理論 33
2.2.1 二平行板單一介電材料之電容值 33
2.2.2 多層介電層之電容值推導 34
2.2.3 觸覺感測器之設計架構 35
2.2.4 電極設計 36
2.2.5 電容靈敏度 38
2.2.6 觸覺感測器之工作原理與理論推導 38
第三章 元件製程與實驗 42
3.1 氧化鋅奈米柱交互鏈鎖結構之觸覺感測器 42
3.1.1 氧化鋅奈米柱元件製作流程 42
3.1.2 製作PDMS基板 43
3.1.3 ZnO/AZO晶種層鍍膜 44
3.1.4 水溶液法成長氧化鋅奈米柱 45
3.2 電容式觸覺感測器 49
3.2.1 感測元件製作流程 49
3.2.2 上下電極製作 50
3.2.3 絕緣層與側壁層製作 52
3.2.4 黏合感測元件 52
第四章 實驗結果討論與分析 54
4.1 壓阻式觸覺感測器實驗結果討論與分析 54
4.1.1 水溶液法成長溫度與反應時間參數最佳化 54
4.1.2 成長溫度對氧化鋅奈米柱成長之影響 56
4.1.3 反應時間對氧化鋅奈米柱成長之影響 69
4.1.4 氧化鋅奈米柱結構之晶體分析 80
4.1.5 氧化鋅奈米柱結構之材料分析 82
4.2 觸覺感測元件實驗量測結果 84
4.2.1 觸覺感測元件之設計與製作 84
4.2.2 電流-電壓特性曲線量測 86
4.2.3 靜態壓力量測結果與討論 88
4.2.4 動態壓力量測結果與討論 90
4.2.4.1 不同頻率下動態壓力量測 91
4.2.4.2 即時脈搏訊號監測 95
4.2.4.3 動態施力之波形辨識 98
4.2.5 感測器之延遲與回復時間量測 99
4.2.6 感測元件之強健性 100
4.2.7 外部環境溫度量測 101
4.2.8 3 × 3觸覺感測陣列 103
4.3 電容式觸覺感測器 106
4.3.1 實驗架構 106
4.3.2 正向力量測 108
4.3.3 側向力量測 109
4.3.4 轉矩量測 111
第五章 結論與未來工作 113
5.1 結論 113
5.2 未來工作 114
參考文獻 116
[1] K. Kim, K. R. Lee, D. S. Lee, N. Cho, W. H. Kim, L. Park, H. Park, Y. K. Kim, Y. Park, and J. Kim, "A silicon-based flexible tactile sensor for ubiquitous robot companion applications," Journal of Physics: Conference Series, vol. 34, no. 1, p. 399, 2006.
[2] M. Shikida, T. Shimizu, K. Sato, and K. Itoigawa, "Active tactile sensor for detecting contact force and hardness of an object," Sensors and Actuators A: Physical, vol. 103, no. 1, pp. 213-218, 2003.
[3] J. Engel, J. Chen, and C. Liu, "Development of polyimide flexible tactile sensor skin," Journal of Micromechanics and Microengineering, vol. 13, no. 3, p. 359, 2003.
[4] D. J. Beebe, D. D. Denton, R. G. Radwin, and J. G. Webster, "A silicon-based tactile sensor for finger-mounted applications," IEEE Transactions on Biomedical Engineering, vol. 45, no. 2, pp. 151-159, 1998.
[5] D. L. Polla, W. T. Chang, R. S. Muller, and R. M. White, "Integrated Zinc oxide-on-silicon tactile-sensor array," International Electron Devices Meeting , vol. 31, pp. 133-136, 1985.
[6] Z. Chu, P. M. Sarro, and S. Middelhoek, "Silicon three-axial tactile sensor," Sensors and Actuators A: Physical, vol. 54, no. 1, pp. 505-510, 1996.
[7] D. L. Polla, R. S. Muller, and R. M. White, "Integrated multisensor chip," IEEE Electron Device Letters, vol. 7, no. 4, pp. 254-256, 1986.
[8] A. Kuoni, R. Holzherr, M. Boillat, and N. F. D. Rooij, "Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor," Journal of Micromechanics and Microengineering, vol. 13, no. 4, pp. S103-S107, 2003.
[9] R. Bao, C. Wang, L. Dong, R. Yu, K. Zhao, Z. L. Wang, and C. Pan, "Flexible and Controllable Piezo‐Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p‐Polymer LED Array," Advanced Functional Materials, vol. 25, no. 19, pp. 2884-2891, 2015.
[10] B. P. Nabar, Z. Celik-Butler, and D. P. Butler, "Self-Powered Tactile Pressure Sensors Using Ordered Crystalline ZnO Nanorods on Flexible Substrates Toward Robotic Skin and Garments," IEEE Sensors Journal, vol. 15, no. 1, pp. 63-70, 2015.
[11] W. Deng, B. Zhang, Y. Chen, L. Mao, and W. Yang, "A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin," Nanoscale, vol. 8, no. 36, pp. 16302-16306, 2016.
[12] W. Deng, L. Jin, Y. Chen, W. Chu, B. Zhang, H. Sun, D. Xiong, Z. Lv, M. Zhu, and W. Yang, "An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator," Nanoscale, vol. 10, no. 2, pp. 843-847, 2018.
[13] H. R. Choi, B. C. Mohanty, J. S. Kim, and Y. S. Cho, "AlN Passivation Layer-Mediated Improvement in Tensile Failure of Flexible ZnO:Al Thin Films," ACS Applied Materials & Interfaces, vol. 2, no. 9, pp. 2471-2474, 2010.
[14] C. Hsu and D. Chen, "Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films," Nanotechnology, vol. 21, no. 28, p. 285603, 2010.
[15] W. Chang, T. Fang, and J. Tsai, "Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators," Journal of Low Temperature Physics, vol. 178, no. 3, pp. 174-187, 2015.
[16] J. Dargahi, "A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications," Sensors and Actuators A: Physical, vol. 80, no. 1, pp. 23-30, 2000.
[17] J. Yuji and C. Sonoda, "A PVDF Tactile Sensor for Static Contact Force and Contact Temperature," The 5th IEEE Conference on Sensors, 2006, pp. 738-741, 2006.
[18] S. Sokhanvar, M. Packirisamy, and J. Dargahi, "A multifunctional PVDF-based tactile sensor for minimally invasive surgery," Smart Materials and Structures, vol. 16, no. 4, p. 989, 2007.
[19] C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, "Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer," Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 334-341, 2008.
[20] M. A. Qasaimeh, S. Sokhanvar, J. Dargahi, and M. Kahrizi, "PVDF-Based Microfabricated Tactile Sensor for Minimally Invasive Surgery," Journal of Microelectromechanical Systems, vol. 18, no. 1, pp. 195-207, 2009.
[21] D. Prasad, L. Zhiling, N. Satish, and E. V. Barrera, "Nanotube film based on single-wall carbon nanotubes for strain sensing," Nanotechnology, vol. 15, no. 3, p. 379, 2004.
[22] I. Kang, M. J. Schulz, J. H. Kim, S. V. Shanov, and D. Shi, "A carbon nanotube strain sensor for structural health monitoring," Smart Materials and Structures, vol. 15, no. 3, p. 737-748, 2006.
[23] M. Park, H. Kim, and J. P. Youngblood, "Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films," Nanotechnology, vol. 19, no. 5, p. 055705, 2008.
[24] C. Hu, W. Su, and W. Fang, "Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application," Journal of Micromechanics and Microengineering, vol. 21, no. 11, p. 115012, 2011.
[25] M. Vatani, E. D. Engeberg, and J. Choi, "Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotube/polymer composites," Sensors and Actuators A: Physical, vol. 195, pp. 90-97, 2013.
[26] K. Takei, Z. Yu, M. Zheng, H. Ota, T. Takahashi, and A. Javey, "Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films," Proceedings of the National Academy of Sciences, vol. 111, no. 5, pp. 1703-1707, 2014.
[27] C. Yeom, K. Chen, D. Kiriya, Z. Yu, G. Cho, and A. Javey, "Large‐Area Compliant Tactile Sensors Using Printed Carbon Nanotube Active‐Matrix Backplanes," Advanced Materials, vol. 27, no. 9, pp. 1561-1566, 2015.
[28] H. Yao, J. Ge, C. Wang, X. Wang, W. Hu, Z. Zheng, Y. Ni, and S. Yu, "A Flexible and Highly Pressure‐Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design," Advanced Materials, vol. 25, no. 46, pp. 6692-6698, 2013.
[29] S. Chun, H. Jung, Y. Choi, G. Bae, J. P. Kil, and W. Park, "A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology," Carbon, vol. 94, pp. 982-987, 2015.
[30] T. Yang, W. Wang, H. Zhang, X. Li, J. Shi, Y. He, Q. Zheng, Z. Li, and H. Zhu, "Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application," ACS Nano, vol. 9, no. 11, pp. 10867-10875, 2015.
[31] M. Park, Y. J. Park, X. Chen, Y. Park, M. Kim, and J. Ahn, "MoS2‐Based Tactile Sensor for Electronic Skin Applications," Advanced Materials, vol. 28, no. 13, pp. 2556-2562, 2016.
[32] A. Wisitsoraat, V. Patthanasetakul, T. Lomas, and A. Tuantranont, "Low cost thin film based piezoresistive MEMS tactile sensor," Sensors and Actuators A: Physical, vol. 139, no. 1, pp. 17-22, 2007.
[33] Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, "Fabrication of Highly Transparent and Conductive Indium–Tin Oxide Thin Films with a High Figure of Merit via Solution Processing," Langmuir, vol. 29, no. 45, pp. 13836-13842, 2013.
[34] W. H. Ko and Q. Wang, "Touch mode capacitive pressure sensors," Sensors and Actuators A: Physical, vol. 75, no. 3, pp. 242-251, 1999.
[35] J. Engel, J. Chen, Z. Fan, and C. Liu, "Polymer micromachined multimodal tactile sensors," Sensors and Actuators A: Physical, vol. 117, no. 1, pp. 50-61, 2005.
[36] E. S. Hwang, J. h. Seo, and Y. J. Kim, "A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics," Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 556-563, 2007.
[37] S. Zhao and R. Zhu, "Electronic Skin with Multifunction Sensors Based on Thermosensation," Advanced Materials, vol. 29, no. 15, p. 1606151, 2017.
[38] Y. Yang, M. Cheng, W. Chang, L. Tsao, S. Yang, W. Shin, F. Chang, S. Chang, and K. Fan, "An integrated flexible temperature and tactile sensing array using PI-copper films," Sensors and Actuators A: Physical, vol. 143, no. 1, pp. 143-153, 2008.
[39] J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha, Y. Jung, H. Lim, S. Kim, and H. Ko, "Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures," ACS Nano, vol. 8, no. 12, pp. 12020-12029, 2014.
[40] C. Pang, G. Lee, T. Kim, S. M. Kim, H. N. Kim, S. Ahn, and K. Suh, "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nauret Material, vol. 11, no. 9, pp. 795-801, 2012.
[41] Y. Jung, D. Lee, J. Park, H. Ko, and H. Lim, "Piezoresistive Tactile Sensor Discriminating Multidirectional Forces," Sensors, vol. 15, no. 10, p. 25463-25473, 2015.
[42] M. Ha, S. Lim, J. Park, D. Um, Y. Lee, and H. Ko, "Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins," Advanced Functional Materials, vol. 25, no. 19, pp. 2841-2849, 2015.
[43] L. Pu, R. Saraf, and V. Maheshwari, "Bio-inspired interlocking random 3-D structures for tactile and thermal sensing," Scientific Reports, vol. 7, no. 1, p. 5834, 2017.
[44] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires," Nature Communications, Article vol. 5, p. 3132, 2014.
[45] C. T. Pan, Y. C. Chen, C. C. Hsieh, C. Y. Su, C. K. Yen, Z. H. Liu, and W. C. Wang, "Ultrasonic sensing device with ZnO piezoelectric nanorods by selectively electrospraying method," Sensors and Actuators A: Physical, vol. 216, pp. 318-327, 2014.
[46] B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Lee, L. Zheng, J. Wei, F. Huo, and X. Chen, "Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors," Small, vol. 10, no. 18, pp. 3625-3631, 2014.
[47] J. S. Lee, K. Shin, O. J. Cheong, J. H. Kim, and J. Jang, "Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring," Scientific Reports, Article vol. 5, p. 7887, 2015.
[48] H. K. Lee, S. I. Chang, K. Kim, , S. J. Kim, K. S. Yun, E. Yoon, and K. H. Kim, "A modular expandable tactile sensor using flexible polymer," The 18th IEEE International Conference on Micro Electro Mechanical Systems, pp. 642-645, 2005.
[49] H. K. Lee, S. I. Chang, and E. Yoon, "A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment," Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1681-1686, 2006.
[50] H. Lee, J. Chung, S. Chang, and E. Yoon, "Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor," Journal of Micromechanics and Microengineering, vol. 21, no. 3, pp. 035010, 2011.
[51] Y. C. Wang, T. Y. Chen, R. Chen, and C. Y. Lo, "Mutual Capacitive Flexible Tactile Sensor for 3-D Image Control," Journal of Microelectromechanical Systems, vol. 22, no. 3, pp. 804-814, 2013.
[52] T. Y. Chen, Y. C. Wang, C. Y. Lo, and R. Chen, "Friction-Assisted Pulling Force Detection Mechanism for Tactile Sensors," Journal of Microelectromechanical Systems, vol. 23, no. 2, pp. 471-481, 2014.
[53] Y. C. Chung, S. T. Chuang, T. Y. Chen, C. Y. Lo, and R. Chen, "Capacitive Tactile Sensor for Angle Detection and Its Accuracy Study," IEEE Sensors Journal, vol. 16, no. 18, pp. 6857-6865, 2016.
[54] S. T. Chuang, M. Chandra, R. Chen, and C. Y. Lo, "Capacitive tactile sensor with asymmetric electrodes for angle-detection-error alleviation," Sensors and Actuators A: Physical, vol. 250, pp. 159-169, 2016.
[55] M. Chandra, S. Y. Ke, R. Chen, and C. Y. Lo, "Vertically stacked capacitive tactile sensor with more than quadrupled spatial resolution enhancement from planar arrangement," Sensors and Actuators A: Physical, vol. 263, pp. 386-390, 2017.
[56] A. R. Hutson, "Hall Effect Studies of Doped Zinc Oxide Single Crystals," Physical Review, vol. 108, no. 2, pp. 222-230, 1957.
[57] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, no. 1–2, pp. 3-32, 2003.
[58] Z. L. Wang, Nanogenerators for Self-powered Devices and Systems. 2011.
[59] R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, "Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review," Nano-Micro Letters, vol. 7, no. 2, pp. 97-120, 2015.
[60] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach," Applied Physics Letters, vol. 78, no. 4, pp. 407-409, 2001.
[61] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, "Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method," Chemistry of Materials, vol. 15, no. 17, pp. 3294-3299, 2003.
[62] L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, "Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives," Applied Physics Letters, vol. 86, no. 2, p. 024108, 2005.
[63] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, "Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal–Organic Chemical Vapor Deposition," Advanced Materials, vol. 16, no. 18, pp. 1661-1664, 2004.
[64] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, "Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 36, no. 11A, pp. L1453, 1997.
[65] J. J. Wu and S. C. Liu, "Low‐Temperature Growth of Well‐Aligned ZnO Nanorods by Chemical Vapor Deposition," Advanced Materials, vol. 14, no. 3, pp. 215-218, 2002.
[66] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, "Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011̄2) sapphire by metalorganic chemical vapor deposition," Journal of Applied Physics, vol. 85, no. 5, pp. 2595-2602, 1999.
[67] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, "Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition," Journal of Applied Physics, vol. 98, no. 1, p. 013505, 2005.
[68] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, "Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells," The Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16159-16161, 2006.
[69] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, and S. B. Zhang, "ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition," Applied Physics Letters, vol. 88, no. 17, p. 173506, 2006.
[70] J. Hu and R. G. Gordon, "Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition," Journal of Applied Physics, vol. 71, no. 2, pp. 880-890, 1992.
[71] Y. Sun, G. M. Fuge, and M. N. R. Ashfold, "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods," Chemical Physics Letters, vol. 396, no. 1, pp. 21-26, 2004.
[72] E. M. Kaidashe, M. Lorenz, H. Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Groundmann, "High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition," Applied Physics Letters, vol. 82, no. 22, pp. 3901-3903, 2003.
[73] R. S. Yadav, P. Mishra, and A. C. Pandey, "Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method," Ultrasonics Sonochemistry, vol. 15, no. 5, pp. 863-868, 2008.
[74] S. H. Jung, E. Oh, K. H. Lee, W. Park, and S. H. Jeong, "A Sonochemical Method for Fabricating Aligned ZnO Nanorods," Advanced Materials, vol. 19, no. 5, pp. 749-753, 2007.
[75] R. Wahab, S. G. Ansari, Y. S. Kim, H. K. Seo, and H. S. Shin, "Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method," Applied Surface Science, vol. 253, no. 18, pp. 7622-7626, 2007.
[76] B. Sunandan and D. Joydeep, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, no. 1, p. 013001, 2009.
[77] A. Laudise R, D. Kolb E, and J. Caporaso A, "Hydrothermal Growth of Large Sound Crystals of Zinc Oxide," Journal of the American Ceramic Society, vol. 47, no. 1, pp. 9-12, 1964.
[78] T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, "Hydrothermal growth of ZnO single crystals and their optical characterization," Journal of Crystal Growth, vol. 214-215, pp. 72-76, 2000.
[79] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, and E. A. Fitzgerald, "Growth of single crystal ZnO nanorods on GaN using an aqueous solution method," Applied Physics Letters, vol. 87, no. 10, p. 101908, 2005.
[80] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, "Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties," Nanotechnology, vol. 18, no. 11, p. 115603, 2007.
[81] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, "Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions," Chemistry of Materials, vol. 17, no. 5, pp. 1001-1006, 2005.
[82] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, "Periodic array of uniform ZnO nanorods by second-order self-assembly," Applied Physics Letters, vol. 84, no. 17, pp. 3376-3378, 2004.
[83] C. H. Liu, W. C. Yiu, F. C. K. Au, J. X. Ding, C. S. Lee, and S. T. Lee, "Electrical properties of zinc oxide nanowires and intramolecular p–n junctions," Applied Physics Letters, vol. 83, no. 15, pp. 3168-3170, 2003.
[84] C. H. Liu et al., "High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays," Advanced Materials, vol. 15, no. 10, pp. 838-841, 2003.
[85] S. H. Yi, S. K. Choi, J. M. Jung, J. A. Kim, W. G. Jung, and W. G. Jung, "Patterned Growth of a Vertically Aligned Zinc Oxide Rod Array on a Gallium Nitride Epitaxial Layer by Using a Hydrothermal Process," Journal of the Korean Physical Society, vol. 53, no. 1, pp. 227-231, 2008.
[86] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, "Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli," Science Advances, vol. 1, no. 9, 2015.
[87] K. Kohara, Y. Tabara, A. Oshiumi, Y. Miyawaki, T. Kobayashi, and T. Miki, "Radial augmentation index: A useful and easily obtainable parameter for vascular aging," American Journal of Hypertension, Vol. 18, no. 1, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *