|
[1] K. Kim, K. R. Lee, D. S. Lee, N. Cho, W. H. Kim, L. Park, H. Park, Y. K. Kim, Y. Park, and J. Kim, "A silicon-based flexible tactile sensor for ubiquitous robot companion applications," Journal of Physics: Conference Series, vol. 34, no. 1, p. 399, 2006. [2] M. Shikida, T. Shimizu, K. Sato, and K. Itoigawa, "Active tactile sensor for detecting contact force and hardness of an object," Sensors and Actuators A: Physical, vol. 103, no. 1, pp. 213-218, 2003. [3] J. Engel, J. Chen, and C. Liu, "Development of polyimide flexible tactile sensor skin," Journal of Micromechanics and Microengineering, vol. 13, no. 3, p. 359, 2003. [4] D. J. Beebe, D. D. Denton, R. G. Radwin, and J. G. Webster, "A silicon-based tactile sensor for finger-mounted applications," IEEE Transactions on Biomedical Engineering, vol. 45, no. 2, pp. 151-159, 1998. [5] D. L. Polla, W. T. Chang, R. S. Muller, and R. M. White, "Integrated Zinc oxide-on-silicon tactile-sensor array," International Electron Devices Meeting , vol. 31, pp. 133-136, 1985. [6] Z. Chu, P. M. Sarro, and S. Middelhoek, "Silicon three-axial tactile sensor," Sensors and Actuators A: Physical, vol. 54, no. 1, pp. 505-510, 1996. [7] D. L. Polla, R. S. Muller, and R. M. White, "Integrated multisensor chip," IEEE Electron Device Letters, vol. 7, no. 4, pp. 254-256, 1986. [8] A. Kuoni, R. Holzherr, M. Boillat, and N. F. D. Rooij, "Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor," Journal of Micromechanics and Microengineering, vol. 13, no. 4, pp. S103-S107, 2003. [9] R. Bao, C. Wang, L. Dong, R. Yu, K. Zhao, Z. L. Wang, and C. Pan, "Flexible and Controllable Piezo‐Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p‐Polymer LED Array," Advanced Functional Materials, vol. 25, no. 19, pp. 2884-2891, 2015. [10] B. P. Nabar, Z. Celik-Butler, and D. P. Butler, "Self-Powered Tactile Pressure Sensors Using Ordered Crystalline ZnO Nanorods on Flexible Substrates Toward Robotic Skin and Garments," IEEE Sensors Journal, vol. 15, no. 1, pp. 63-70, 2015. [11] W. Deng, B. Zhang, Y. Chen, L. Mao, and W. Yang, "A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin," Nanoscale, vol. 8, no. 36, pp. 16302-16306, 2016. [12] W. Deng, L. Jin, Y. Chen, W. Chu, B. Zhang, H. Sun, D. Xiong, Z. Lv, M. Zhu, and W. Yang, "An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator," Nanoscale, vol. 10, no. 2, pp. 843-847, 2018. [13] H. R. Choi, B. C. Mohanty, J. S. Kim, and Y. S. Cho, "AlN Passivation Layer-Mediated Improvement in Tensile Failure of Flexible ZnO:Al Thin Films," ACS Applied Materials & Interfaces, vol. 2, no. 9, pp. 2471-2474, 2010. [14] C. Hsu and D. Chen, "Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films," Nanotechnology, vol. 21, no. 28, p. 285603, 2010. [15] W. Chang, T. Fang, and J. Tsai, "Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators," Journal of Low Temperature Physics, vol. 178, no. 3, pp. 174-187, 2015. [16] J. Dargahi, "A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications," Sensors and Actuators A: Physical, vol. 80, no. 1, pp. 23-30, 2000. [17] J. Yuji and C. Sonoda, "A PVDF Tactile Sensor for Static Contact Force and Contact Temperature," The 5th IEEE Conference on Sensors, 2006, pp. 738-741, 2006. [18] S. Sokhanvar, M. Packirisamy, and J. Dargahi, "A multifunctional PVDF-based tactile sensor for minimally invasive surgery," Smart Materials and Structures, vol. 16, no. 4, p. 989, 2007. [19] C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, "Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer," Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 334-341, 2008. [20] M. A. Qasaimeh, S. Sokhanvar, J. Dargahi, and M. Kahrizi, "PVDF-Based Microfabricated Tactile Sensor for Minimally Invasive Surgery," Journal of Microelectromechanical Systems, vol. 18, no. 1, pp. 195-207, 2009. [21] D. Prasad, L. Zhiling, N. Satish, and E. V. Barrera, "Nanotube film based on single-wall carbon nanotubes for strain sensing," Nanotechnology, vol. 15, no. 3, p. 379, 2004. [22] I. Kang, M. J. Schulz, J. H. Kim, S. V. Shanov, and D. Shi, "A carbon nanotube strain sensor for structural health monitoring," Smart Materials and Structures, vol. 15, no. 3, p. 737-748, 2006. [23] M. Park, H. Kim, and J. P. Youngblood, "Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films," Nanotechnology, vol. 19, no. 5, p. 055705, 2008. [24] C. Hu, W. Su, and W. Fang, "Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application," Journal of Micromechanics and Microengineering, vol. 21, no. 11, p. 115012, 2011. [25] M. Vatani, E. D. Engeberg, and J. Choi, "Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotube/polymer composites," Sensors and Actuators A: Physical, vol. 195, pp. 90-97, 2013. [26] K. Takei, Z. Yu, M. Zheng, H. Ota, T. Takahashi, and A. Javey, "Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films," Proceedings of the National Academy of Sciences, vol. 111, no. 5, pp. 1703-1707, 2014. [27] C. Yeom, K. Chen, D. Kiriya, Z. Yu, G. Cho, and A. Javey, "Large‐Area Compliant Tactile Sensors Using Printed Carbon Nanotube Active‐Matrix Backplanes," Advanced Materials, vol. 27, no. 9, pp. 1561-1566, 2015. [28] H. Yao, J. Ge, C. Wang, X. Wang, W. Hu, Z. Zheng, Y. Ni, and S. Yu, "A Flexible and Highly Pressure‐Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design," Advanced Materials, vol. 25, no. 46, pp. 6692-6698, 2013. [29] S. Chun, H. Jung, Y. Choi, G. Bae, J. P. Kil, and W. Park, "A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology," Carbon, vol. 94, pp. 982-987, 2015. [30] T. Yang, W. Wang, H. Zhang, X. Li, J. Shi, Y. He, Q. Zheng, Z. Li, and H. Zhu, "Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application," ACS Nano, vol. 9, no. 11, pp. 10867-10875, 2015. [31] M. Park, Y. J. Park, X. Chen, Y. Park, M. Kim, and J. Ahn, "MoS2‐Based Tactile Sensor for Electronic Skin Applications," Advanced Materials, vol. 28, no. 13, pp. 2556-2562, 2016. [32] A. Wisitsoraat, V. Patthanasetakul, T. Lomas, and A. Tuantranont, "Low cost thin film based piezoresistive MEMS tactile sensor," Sensors and Actuators A: Physical, vol. 139, no. 1, pp. 17-22, 2007. [33] Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, "Fabrication of Highly Transparent and Conductive Indium–Tin Oxide Thin Films with a High Figure of Merit via Solution Processing," Langmuir, vol. 29, no. 45, pp. 13836-13842, 2013. [34] W. H. Ko and Q. Wang, "Touch mode capacitive pressure sensors," Sensors and Actuators A: Physical, vol. 75, no. 3, pp. 242-251, 1999. [35] J. Engel, J. Chen, Z. Fan, and C. Liu, "Polymer micromachined multimodal tactile sensors," Sensors and Actuators A: Physical, vol. 117, no. 1, pp. 50-61, 2005. [36] E. S. Hwang, J. h. Seo, and Y. J. Kim, "A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics," Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 556-563, 2007. [37] S. Zhao and R. Zhu, "Electronic Skin with Multifunction Sensors Based on Thermosensation," Advanced Materials, vol. 29, no. 15, p. 1606151, 2017. [38] Y. Yang, M. Cheng, W. Chang, L. Tsao, S. Yang, W. Shin, F. Chang, S. Chang, and K. Fan, "An integrated flexible temperature and tactile sensing array using PI-copper films," Sensors and Actuators A: Physical, vol. 143, no. 1, pp. 143-153, 2008. [39] J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha, Y. Jung, H. Lim, S. Kim, and H. Ko, "Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures," ACS Nano, vol. 8, no. 12, pp. 12020-12029, 2014. [40] C. Pang, G. Lee, T. Kim, S. M. Kim, H. N. Kim, S. Ahn, and K. Suh, "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nauret Material, vol. 11, no. 9, pp. 795-801, 2012. [41] Y. Jung, D. Lee, J. Park, H. Ko, and H. Lim, "Piezoresistive Tactile Sensor Discriminating Multidirectional Forces," Sensors, vol. 15, no. 10, p. 25463-25473, 2015. [42] M. Ha, S. Lim, J. Park, D. Um, Y. Lee, and H. Ko, "Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins," Advanced Functional Materials, vol. 25, no. 19, pp. 2841-2849, 2015. [43] L. Pu, R. Saraf, and V. Maheshwari, "Bio-inspired interlocking random 3-D structures for tactile and thermal sensing," Scientific Reports, vol. 7, no. 1, p. 5834, 2017. [44] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires," Nature Communications, Article vol. 5, p. 3132, 2014. [45] C. T. Pan, Y. C. Chen, C. C. Hsieh, C. Y. Su, C. K. Yen, Z. H. Liu, and W. C. Wang, "Ultrasonic sensing device with ZnO piezoelectric nanorods by selectively electrospraying method," Sensors and Actuators A: Physical, vol. 216, pp. 318-327, 2014. [46] B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Lee, L. Zheng, J. Wei, F. Huo, and X. Chen, "Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors," Small, vol. 10, no. 18, pp. 3625-3631, 2014. [47] J. S. Lee, K. Shin, O. J. Cheong, J. H. Kim, and J. Jang, "Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring," Scientific Reports, Article vol. 5, p. 7887, 2015. [48] H. K. Lee, S. I. Chang, K. Kim, , S. J. Kim, K. S. Yun, E. Yoon, and K. H. Kim, "A modular expandable tactile sensor using flexible polymer," The 18th IEEE International Conference on Micro Electro Mechanical Systems, pp. 642-645, 2005. [49] H. K. Lee, S. I. Chang, and E. Yoon, "A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment," Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1681-1686, 2006. [50] H. Lee, J. Chung, S. Chang, and E. Yoon, "Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor," Journal of Micromechanics and Microengineering, vol. 21, no. 3, pp. 035010, 2011. [51] Y. C. Wang, T. Y. Chen, R. Chen, and C. Y. Lo, "Mutual Capacitive Flexible Tactile Sensor for 3-D Image Control," Journal of Microelectromechanical Systems, vol. 22, no. 3, pp. 804-814, 2013. [52] T. Y. Chen, Y. C. Wang, C. Y. Lo, and R. Chen, "Friction-Assisted Pulling Force Detection Mechanism for Tactile Sensors," Journal of Microelectromechanical Systems, vol. 23, no. 2, pp. 471-481, 2014. [53] Y. C. Chung, S. T. Chuang, T. Y. Chen, C. Y. Lo, and R. Chen, "Capacitive Tactile Sensor for Angle Detection and Its Accuracy Study," IEEE Sensors Journal, vol. 16, no. 18, pp. 6857-6865, 2016. [54] S. T. Chuang, M. Chandra, R. Chen, and C. Y. Lo, "Capacitive tactile sensor with asymmetric electrodes for angle-detection-error alleviation," Sensors and Actuators A: Physical, vol. 250, pp. 159-169, 2016. [55] M. Chandra, S. Y. Ke, R. Chen, and C. Y. Lo, "Vertically stacked capacitive tactile sensor with more than quadrupled spatial resolution enhancement from planar arrangement," Sensors and Actuators A: Physical, vol. 263, pp. 386-390, 2017. [56] A. R. Hutson, "Hall Effect Studies of Doped Zinc Oxide Single Crystals," Physical Review, vol. 108, no. 2, pp. 222-230, 1957. [57] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, no. 1–2, pp. 3-32, 2003. [58] Z. L. Wang, Nanogenerators for Self-powered Devices and Systems. 2011. [59] R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, "Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review," Nano-Micro Letters, vol. 7, no. 2, pp. 97-120, 2015. [60] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach," Applied Physics Letters, vol. 78, no. 4, pp. 407-409, 2001. [61] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, "Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method," Chemistry of Materials, vol. 15, no. 17, pp. 3294-3299, 2003. [62] L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, "Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives," Applied Physics Letters, vol. 86, no. 2, p. 024108, 2005. [63] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, "Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal–Organic Chemical Vapor Deposition," Advanced Materials, vol. 16, no. 18, pp. 1661-1664, 2004. [64] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, "Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 36, no. 11A, pp. L1453, 1997. [65] J. J. Wu and S. C. Liu, "Low‐Temperature Growth of Well‐Aligned ZnO Nanorods by Chemical Vapor Deposition," Advanced Materials, vol. 14, no. 3, pp. 215-218, 2002. [66] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, "Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011̄2) sapphire by metalorganic chemical vapor deposition," Journal of Applied Physics, vol. 85, no. 5, pp. 2595-2602, 1999. [67] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, "Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition," Journal of Applied Physics, vol. 98, no. 1, p. 013505, 2005. [68] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, "Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells," The Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16159-16161, 2006. [69] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, and S. B. Zhang, "ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition," Applied Physics Letters, vol. 88, no. 17, p. 173506, 2006. [70] J. Hu and R. G. Gordon, "Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition," Journal of Applied Physics, vol. 71, no. 2, pp. 880-890, 1992. [71] Y. Sun, G. M. Fuge, and M. N. R. Ashfold, "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods," Chemical Physics Letters, vol. 396, no. 1, pp. 21-26, 2004. [72] E. M. Kaidashe, M. Lorenz, H. Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Groundmann, "High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition," Applied Physics Letters, vol. 82, no. 22, pp. 3901-3903, 2003. [73] R. S. Yadav, P. Mishra, and A. C. Pandey, "Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method," Ultrasonics Sonochemistry, vol. 15, no. 5, pp. 863-868, 2008. [74] S. H. Jung, E. Oh, K. H. Lee, W. Park, and S. H. Jeong, "A Sonochemical Method for Fabricating Aligned ZnO Nanorods," Advanced Materials, vol. 19, no. 5, pp. 749-753, 2007. [75] R. Wahab, S. G. Ansari, Y. S. Kim, H. K. Seo, and H. S. Shin, "Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method," Applied Surface Science, vol. 253, no. 18, pp. 7622-7626, 2007. [76] B. Sunandan and D. Joydeep, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, no. 1, p. 013001, 2009. [77] A. Laudise R, D. Kolb E, and J. Caporaso A, "Hydrothermal Growth of Large Sound Crystals of Zinc Oxide," Journal of the American Ceramic Society, vol. 47, no. 1, pp. 9-12, 1964. [78] T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, "Hydrothermal growth of ZnO single crystals and their optical characterization," Journal of Crystal Growth, vol. 214-215, pp. 72-76, 2000. [79] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, and E. A. Fitzgerald, "Growth of single crystal ZnO nanorods on GaN using an aqueous solution method," Applied Physics Letters, vol. 87, no. 10, p. 101908, 2005. [80] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, "Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties," Nanotechnology, vol. 18, no. 11, p. 115603, 2007. [81] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, "Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions," Chemistry of Materials, vol. 17, no. 5, pp. 1001-1006, 2005. [82] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, "Periodic array of uniform ZnO nanorods by second-order self-assembly," Applied Physics Letters, vol. 84, no. 17, pp. 3376-3378, 2004. [83] C. H. Liu, W. C. Yiu, F. C. K. Au, J. X. Ding, C. S. Lee, and S. T. Lee, "Electrical properties of zinc oxide nanowires and intramolecular p–n junctions," Applied Physics Letters, vol. 83, no. 15, pp. 3168-3170, 2003. [84] C. H. Liu et al., "High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays," Advanced Materials, vol. 15, no. 10, pp. 838-841, 2003. [85] S. H. Yi, S. K. Choi, J. M. Jung, J. A. Kim, W. G. Jung, and W. G. Jung, "Patterned Growth of a Vertically Aligned Zinc Oxide Rod Array on a Gallium Nitride Epitaxial Layer by Using a Hydrothermal Process," Journal of the Korean Physical Society, vol. 53, no. 1, pp. 227-231, 2008. [86] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, "Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli," Science Advances, vol. 1, no. 9, 2015. [87] K. Kohara, Y. Tabara, A. Oshiumi, Y. Miyawaki, T. Kobayashi, and T. Miki, "Radial augmentation index: A useful and easily obtainable parameter for vascular aging," American Journal of Hypertension, Vol. 18, no. 1, 2005.
|