|
[1] R. Kurzweil, The Singularity Is Near, Viking, United States, 2005. [2] http://apple.com/macbook-air/. [3] https://semiengineering.com/all-about-interconnects/. [4] C.A. Zorman, R.C. Roberts, L. Chen, Additive processes for semiconductors and dielectric materials, MEMS Materials and Processes Handbook, Springer2011, pp. 37-136. [5] A. Kumar, M. Gupta, "A review on activities of fifth generation mobile communication system", Alexandria Engineering Journal, 57 (2018) 1125. [6] H. Kim, S.W. Kim, E. Park, J.H. Kim, H.J. Chang, "The role of fifth-generation mobile technology in prehospital emergency care: An opportunity to support paramedics", Health Policy and Technology, 9 (2020) 109. [7] C.H. Walker, E.T. Winlow, 23rd International Workshop on Thermal Investigations of ICs and Systems, IEEE, Netherland, 2017, pp. 1-7. [8] Z. Burghard, L. Zini, V. Srot, P. Bellina, P.A.V. Aken, J. Bill, "Toughening through Nature-Adapted Nanoscale Design", Nano letters, 9 (2009) 4103. [9] Z. Burghard, A. Tucic, L.P.H. Jeurgens, R.C. Hoffmann, J. Bill, F. Aldinger, "Nanomechanical Properties of Bioinspired Organic–Inorganic Composite Films", Advanced Materials, 19 (2007) 970. [10] H.M. Yang, Y.C. Chan, T.H. Hsu, H.W. Chen, J.W. Lee, J.G. Duh, P.Y. Chen, "Synthesis and characterization of nacre-inspired zirconia/polyimide multilayer coatings by a hybrid sputtering and pulsed laser deposition technique", Surface and Coatings Technology, 284 (2015) 118. 102 [11] R. Valiev, I. Sabirov, E. Zemtsova, E. Parfenov, L. Dluhoš, T. Lowe, Nanostructured commercially pure titanium for development of miniaturized biomedical implants, Titanium in Medical and Dental Applications, Elsevier2018, pp. 393-417. [12] A. Vance, K. Bari, A. Arjunan, "Compressive performance of an arbitrary stiffness matched anatomical Ti64 implant manufactured using Direct Metal Laser Sintering", Materials & Design, 160 (2018) 1281. [13] M. Niinomi, M. Nakai, "Titanium-based biomaterials for preventing stress shielding between implant devices and bone", International journal of biomaterials, 2011 (2011). [14] H. Yilmazer, M. Niinomi, M. Nakai, J. Hieda, Y. Todaka, T. Akahori, T. Miyazaki, "Heterogeneous structure and mechanical hardness of biomedical β-type Ti–29Nb–13Ta–4.6Zr subjected to high-pressure torsion", Journal of the Mechanical Behavior of Biomedical Materials, 10 (2012) 235. [15] T.H. Li, P.C. Wong, S.F. Chang, P.H. Tsai, J.S.C. Jang, J.C. Huang, "Biocompatibility study on Ni-free Ti-based and Zr-based bulk metallic glasses", Mater Sci Eng C Mater Biol Appl, 75 (2017) 1. [16] C.H. Lin, C.H. Chen, Y.S. Huang, C.H. Huang, J.C. Huang, J.S.C. Jang, Y.S. Lin, "In-vivo investigations and cytotoxicity tests on Ti/Zr-based metallic glasses with various Cu contents", Mater Sci Eng C Mater Biol Appl, 77 (2017) 308. [17] K.S. Gadre, T.L. Alford, J.W. Mayer, "Use of TiN(O)/Ti as an effective intermediate stress buffer and diffusion barrier for Cu/parylene-n interconnects", Applied Physics Letters, 79 (2001) 3260. [18] L.C. Leu, D.P. Norton, L. McElwee White, T.J. Anderson, "Ir∕TaN as a bilayer diffusion barrier for advanced Cu interconnects", Applied Physics Letters, 92 (2008) 111917. 103 [19] S.Y. Chang, C.E. Li, S.C. Chiang, Y.C. Huang, "4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects", Journal of Alloys and Compounds, 515 (2012) 4. [20] W. Diyatmika, L. Xue, T.N. Lin, C.w. Chang, J.P. Chu, "Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study", Japanese Journal of Applied Physics, 55 (2016) 080303. [21] J. Lee, H.C. Tung, J.G. Duh, "Enhancement of mechanical and thermal properties in Zr–Cu–Ni–Al–N thin film metallic glass by compositional control of nitrogen", Materials Letters, 159 (2015) 369. [22] J. Lee, J.G. Duh, "Structural evolution of Zr-Cu-Ni-Al-N thin film metallic glass and its diffusion barrier performance in Cu-Si interconnect at elevated temperature", Vacuum, 142 (2017) 81. [23] X. Sun, J.S. Reid, E. Kolawa, M.A. Nicolet, R.P. Ruiz, "Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si", Journal of Applied Physics, 81 (1997) 664. [24] T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, M. Murakami, "Diffusion barrier property of TaN between Si and Cu", Applied Surface Science, 99 (1996) 265. [25] K.S. Gadre, T.L. Alford, J.W. Mayer, "Use of TiN(O)/Ti as an effective intermediate stress buffer and diffusion barrier for Cu/parylene-n interconnects", Applied Physics Letters, 79 (2001) 3260. [26] R.W. Balluffi, R.F.M. Medalist, "Grain Boundary Diffusion Mechanisms in Metals", METALLURGICAL TRANSACTIONS B, 13B (1982) 527. [27] D.B. Miracle, "A Physical Model for Metallic Glass Structures: An Introduction and Update", JOM, 64 (2012) 846. 104 [28] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, "Atomic packing and short-to-medium-range order in metallic glasses", Nature, 439 (2006) 419. [29] W. Chen, Y. Wang, J. Qiang, C. Dong, "Bulk metallic glasses in the Zr-Al-Ni-Cu system", Acta Materialia, 51 (2003) 1899. [30] J. Lee, K.H. Huang, K.C. Hsu, H.C. Tung, J.W. Lee, J.G. Duh, "Applying composition control to improve the mechanical and thermal properties of Zr–Cu–Ni–Al thin film metallic glass by magnetron DC sputtering", Surface and Coatings Technology, 278 (2015) 132. [31] C. Sanchezs, H. Arribart, M. Madeleine, G. Guille, "Biomimetism and bioinspiration as tools for the design of innovative materials and systems", Nature Materials, 4 (2005) 277. [32] G. Mayer, "Rigid Biological Systems as Models for Synthetic Composites", Science, 310 (2005) 1144. [33] A.Y. Lin, P.Y. Chen, M.A. Meyers, "The growth of nacre in the abalone shell", Acta Biomaterialia, 4 (2008) 131. [34] I.A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhoe, P. Fenter, P.M. Eisenberger, S.M. Gruner, "Biomimetic Pathways for Assembling Inorganic Thin Films", Science, 273 (1996) 892. [35] E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, "Tough, Bio-Inspired Hybrid Materials", Science, 322 (2008) 1516. [36] A. Sellinger, P.M. Weiss, A. Nguyen, Y. Lu, R.A. Assink, W. Gong, C.J. Brinker, "Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre", Nature, 394 (1998) 256. [37] R.O. Ritchie, "The conflicts between strength and toughness", Nature Materials, 10 (2011) 817. 105 [38] H. Toiserkani, "Polyimide/nano-TiO2 hybrid films having benzoxazole pendent groups: In situ sol–gel preparation and evaluation of properties", Progress in Organic Coatings, 88 (2015) 17. [39] F. Atabaki, H. Ahmadizadegan, "Fabrication of a New Polyimide/Titania (TiO2) Nanocomposite Thin Film by the Sol-Gel Route", Polymer-Plastics Technology and Engineering, 54 (2015) 523. [40] D. Zhao, C. Chen, K. Yao, X. Shi, Z. Wang, H. Hahn, H. Gleiter, N. Chen, "Designing biocompatible Ti-based amorphous thin films with no toxic element", Journal of Alloys and Compounds, 707 (2017) 142. [41] L. Bai, C. Cui, Q. Wang, S. Bu, Y. Qi, "Ti–Zr–Fe–Si system amorphous alloys with excellent biocompatibility", Journal of Non-Crystalline Solids, 354 (2008) 3935. [42] Z.Y. Suo, J.J. Chen, Y.L. Song, K.Q. Qiu, "A New Ti-Zr-Cu-Si Amorphous Alloy with Excellent Biocompatibility", Advanced Materials Research, 791-793 (2013) 435. [43] H. Lefaix, A. Asselin, P. Vermaut, J.M. Sautier, A. Berdal, R. Portier, F. Prima, "On the biocompatibility of a novel Ti-based amorphous composite: structural characterization and in-vitro osteoblasts response", J Mater Sci Mater Med, 19 (2008) 1861. [44] C.-N. Cai, C. Zhang, Y.-S. Sun, H.-H. Huang, C. Yang, L. Liu, "ZrCuFeAlAg thin film metallic glass for potential dental applications", Intermetallics, 86 (2017) 80. [45] A. Takeuchi, A. Inoue, "Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element", Materials Transactions, 46 (2005) 2817. [46] S.R. Prajapati, S. Kasyap, A. Pratap, "A thermodynamic approach towards glass-forming ability of amorphous metallic alloys", Bulletin of Materials Science, 38 (2015) 1693. 106 [47] J. Lee, M.L. Liou, J.G. Duh, "The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application", Surface and Coatings Technology, 310 (2017) 214. [48] M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. ul Hasan, "Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli", Annals of Microbiology, 60 (2010) 75. [49] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, "Characterization of enhanced antibacterial effects of novel silver nanoparticles", Nanotechnology, 18 (2007) 225103. [50] A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys", Acta mater., 48 (2000) 279. [51] P.H. Kuo, J. Lee, J.G. Duh, "Ultra-thin metallic glass film of Zr–Cu–Ni–Al–N as diffusion barrier for Cu–Si interconnects under fully recrystallized temperature", Journal of Materials Science: Materials in Electronics, 29 (2018) 19554. [52] ISO 20502, fine ceramics (advanced ceramics, advanced technical ceramics) - determination of adhesion of ceramic coatings by scratch testing, International Organization for Standardization (2005). [53] JIS Z2801, antimicrobial products-test for antimicrobial activity and efficacy, Japanese Industrial Standards (2000). [54] Use of international standard ISO 10993-1, biological evaluation of medical devices, Food and Drug Administration (2016). [55] Use of international standard ISO 10993-5, biological evaluation of medical devices, International Organization for Standardization (2009). |