|
1. Moore, G. E. “Cramming more components onto integrated circuits”, Electronics 1965, 38, 114. 2. Kondo, S.; Sakuma, N.; Homma Y.; Ohashi, N. “, Slurry chemical corrosion and galvanic corrosion during copper chemical mechanical polishing”, Jpn. J. Appl. Phys. 2000, 39, 6216. 3. Kim, S. C.; Shim, C. M.; Hong, J. H.; Lee, H. C.; Han, J. W.; Kim, K. H.; Kim, Y. M. “Copper hillock induced copper diffusion and corrosion behavior in a dual damascene process”, Electrochem. Solid−State Lett. 2007, 10, H193. 4. Shimada, M.; Kokawa, H.; Wang, Z. J.; Sato, Y. S.; Karibe, I. “Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin−induced grain boundary engineering”, Acta Mater. 2002, 50, 2331. 5. Wood, E. L.; Sansoz, F. “Growth and properties of coherent twinning superlattice nanowires”, Nanoscale 2012, 4, 5268. 6. Tan, C. M. “Electromigration in ULSI Interconnections”, World Scientific Publishing Co. Pte. Ltd., Singapore 2010. 7. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. “One−dimensional nanostructures: synthesis, characterization, and applications”, Adv. Mater. 2003, 15, 353. 8. Yin, Y,; Rioux, R. M.; Erdonmez, C. K.; Hughes S.; Somorjai, G. A.; Alivisatos A. P. “Formation of hollow nanocrystals through the nanoscale Kirkendall effect”, Science 2004, 304, 711. 9. Tu, K. N. “Recent advances on electromigration in very−large−scale−integration of interconnects”, J. Appl. Phys. 2003, 94, 5451. 10. Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. “Ultrahigh strength and high electrical conductivity in copper”, Science 2004, 304, 422. 11. Xu, D.; Kwan, W. L.; Chen, K.; Zhang, X.; Ozolins, V.; Tu, K. N. “Nanotwin formation in copper thin films by stress strain relaxation in pulse electrodeposition”, Appl. Phys. Lett. 2007, 91, 254105. 12. Liao, C. N.; Lin, C. Y.; Huang, C. L.; Lu, Y. S. “Morphology, texture and twinning structure of Cu films prepared by Low−temperature electroplating”, J. Electrochem. Soc. 2013, 160, D3070. 13. Liu, T. C.; Liu, C. M.; Hsiao, M. Y.; Lu, J. L.; Huang, Y. S.; Chen C. “Fabrication and Characterization of (111)−Oriented and Nanotwinned Cu by Dc Electrodeposition”, Cryst. Growth Des. 2012, 12, 5012. 14. Liu, C. M.; Lin, H. W.; Lu, C. L.; Chen, C. “Effect of grain orientations of Cu seed layers on the growth of <111>−oriented nanotwinned Cu”, Sci Rep. 2014, 4, 6123 15. Zhang, X.; Wang, H.; Chen, X. H.; Lu, L.; Lu, K.; Hoagland, R. G.; Misra, A. “High−strength sputter−deposited Cu foils with preferred orientation of nanoscale growth twins”, Appl. Phys. Lett. 2006, 88, 173116. 16. Zhang, X.; Misra, A.; Wang, H.; Shen, T. D.; Nastasi, M.; Mitchell, T. E.; Hirth, J. P.; Hoagland, R. G.; Embury, J. D. “Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning”, Acta Mater. 2004, 52, 995. 17. Bufford, D.; Wang, H.; Zhang, X. “High strength, epitaxial nanotwinned Ag films”, Acta Mater. 2011, 59, 93. 18. Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H. “Influence of deposition rate on the formation of growth twins in sputter−deposited 330 austenitic stainless steel films”, Appl. Phys. Lett. 2007, 90, 153101. 19. Shute, C. J.; Myers, B. D.; Xie, S.; Barbee Jr., T. W.; Hodge, A. M.; Weertman, J. R. “Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning”, Scr. Mater. 2009, 60, 1073. 20. Anderoglu, O.; Misra, A.; Wang, H.; Ronning, F.; Hundley, M. F.; Zhang, X. “Epitaxial nanotwinned Cu films with high strength and high conductivity”, Appl. Phys. Lett. 2008, 93, 083108. 21. Zhu, Z. T.; Narayan, J.; Hirth, J. P.; Mahajan, S.; Wu, X. L.; Liao, X. Z. “Formation of single and multiple deformation twins in nanocrystalline fcc metals”, Acta Mater. 2009, 57, 3763. 22. Lu, K.; Lu, J. “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment”, Mater. Sci. Eng. A 2004, 38, 376. 23. Wang, K.; Tao, N. R.; Liu, G.; Lu, J.; Lu, K. “Plastic strain−induced grain refinement at the nanometer scale in copper”, Acta Mater. 2006, 54, 5281. 24. Chan, T. C.; Chen, Y. Z.; Chueh, Y. L.; Liao, C. N. “Large−scale nanotwins in Cu films/Cu nanowires via stress engineering by a high−energy ion beam bombardment process: growth and characterization”, J. Phys. Chem. C 2014, 2, 9805. 25. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. “One−dimensional nanostructures: synthesis, characterization, and applications”, Adv. Mater. 2003, 15, 353. 26. Rao, C. N. R.; Deepak, F. L.; Gundiah, G.; Govindaraj A. “Inorganic nanowires”, Prog. Solid State Chem. 2003, 31, 5. 27. Rathmell, A.R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J. “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting Films”, Adv. Mater. 2010, 22, 3558. 28. Rathmell, A.R.; Wiley, B.J. “The Synthesis and Coating of Long, Thin Copper Nanowires to make Flexible, Transparent Conducting Films on Plastic Substrates”, Adv. Mater. 2011, 23, 4798. 29. Zhong, S.; Koch, T.; Wang, M.; Scherer, T.; Walheim, S.; Hahn H.; Schimmel, T.; “Nanoscale twinned copper nanowire formation by direct electrodeposition”, Small 2009, 5, 2265. 30. Dong, J. P.; Ren, L. X.; Zhang, Y.; Cui, X. L.; Hu, P. F.; Xu, J. Q. “Direct electrodeposition of cable−like CuO@Cu nanowires array for non−enzymatic sensing”, Talanta 2015, 132, 719. 31. Jani, A. M. M.; Losic, D.; Voelcker, N. H. “Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications”, Prog. Mater. Sci. 2013, 58, 636. 32. Jessensky, O.; Müller, F.; Gösele, U. “Self−organized formation of hexagonal pore arrays in anodic alumina”, Appl. Phys. Lett. 1998, 72, 1173. 33. Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self−organization in anodic alumina”, J Appl Phys. 1998, 84, 6023. 34. Sauer, G.; Brehm, G.; Schneider, S. “Highly ordered monocrystalline silver nanowire arrays”, J. Appl. Phys. 2002, 51, 3243. 35. Liao, C. N.; Lu, Y. C.; Xu, D. “Modulation of crystallographic texture and twinning structure of Cu nanowires by electrodeposition”, J. Electrochem. Soc. 2013, 160, D207. 36. Cui, B. Z.; Han, K.; Xin, Y.; Waryoba, D.R.; Mbaruku, A.L. “Highly textured and twinned Cu films fabricated by pulsed electrodeposition”, Acta Mater. 2007, 55, 4429. 37. Chan, T. C.; Lin, Y. M.; Tsai, H. W.; Wang, M. Z. M.; Liao, C. N.; Chueh, Y. L. “Growth of large−scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance”, Nanoscale 2014, 6, 7332. 38. Anderoglu, O.; Misra, A.; Ronning, F.; Wang, H.; Zhang, X. “Significant enhancement of the strength−to−resistivity ratio by nanotwins in epitaxial Cu films”, J. Appl. Phys. 2009, 106, 024313. 39. Jang, D. Li, X.; Gao, H.; Greer, J. R. “Deformation mechanisms in nanotwinned metal nanopillars”, Nature Nanotech. 2012, 7, 594. 40. Lu, L.; Chen, X.; Huang, X.; Lu, K. “Revealing the Maximum Strength in Nanotwinned Copper”, Science 2009, 323, 607. 41. Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Observation of Atomic Diffusion at Twin−Modified Grain Boundaries in Copper”, Science 2008, 321, 1066. 42. Chen, H. P.; Huang, C. W.; Wang, C. W.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Optimization of the nanotwin−induced zigzag surface of copper by electromigration”, Nanoscale 2016, 8, 2584. 43. Meng, G. Z.; Shao, Y. W.; Zhang, T.; Zhang, Y.; Wang F. H. “Synthesis and corrosion property of pure Ni with a highly dense of nanoscale twins”, Electrochim. Acta. 2008, 53, 5923. 44. Meng, G. Z.; Wei, L. Y.; Shao, Y. W.; Zhang, T.; Wang, F. H.; Dong, C. F.; Li, X. A. “High Pitting Corrosion Resistance of Pure Aluminum with Nanoscale Twins”, J. Electrochem. Soc. 2009, 156, C240. 45. Meng, G. Z.; Sun, F. L.; Shao, Y. W.; Zhang, T.; Wang, F. H.; Dong, C. F.; Li, X. A. “Influence of nano−scale twins (NT) structure on passive film formed on nickel”, Electrochim. Acta. 2010, 55, 2575. 46. Zhao, Y.; Cheng, I.C.; Kassner, M.E.; Hodge, A.M. “The effect of nanotwins on the corrosion behavior of copper”, Acta Mater. 2013, 67, 181. 47. LaGrange, T.; Reed, B. W.; Wall, M.; Mason, J.; Barbee, T.; Kumar, M. “Topological view of the thermal stability of nanotwinned copper”, Appl. Phys. Lett. 2013, 102, 011905. 48. Anderoglu, O.; Misra, A.; Wang, H.; Zhang, X. “Thermal stability of sputtered Cu films with nanoscale growth twins”, J. Appl. Phys. 2008, 103, 094322. 49. Chen, Y.; Yu, K. Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X. “Damage−tolerant nanotwinned metals with nanovoids under radiation environments”, Nat. Commun. 2015, 6, 1. 50. Chan, T. C.; Chueh, Y. L.; Liao, C. N. “Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition”, Cryst. Growth Des. 2011, 11, 4970. 51. Robertson, W. M.; Shewmon, P. G. “Variation of surface tension with surface orientation in copper”, Trans. Metall. Soc. AIME 1962, 224, 804. 52. Mykura, H. “Twin−boundary free energies and the variation of surface free energies with crystallographic orientation”, Acta Metall. 1957, 5, 346. 53. Feng, Z.; Marks, C. R.; Barkatt, A. “Oxidation-rate excursions during the oxidation of copper in gaseous environments at moderate temperatures”, Oxid MET. 2003, 60, 393. 54. Cocke, D. L.; Chuah, G. K.; Kruse, N.; Block, J. H.; “Oxidation and surface copper oxide stability investigated by pulsed field desorption mass spectrometry”, Appl. Surf. Sci. 1995, 84, 153. 55. Nakamura, R.; Tokozakura, D.; Nakajima, H.; Lee, J. G.; Mori, H. “Hollow oxide formation by oxidation of Al and Cu nanoparticles”, J. Appl. Phys. 2007, 101, 074303. 56. Cabrera, N.; Mott, N. F. “Theory of the oxidation of metals”, Rep. Prog. Phys. 1949, 12, 163. 57. Lim, J. W.; Iijima, J.; Zhu, Y.; Yoo, J. H.; Choi, G. S.; Mimura, K.; Isshiki, M. “Nanoscale investigation of long−term native oxidation of Cu films”, Thin Solid Films 2008, 516, 4040. 58. Gusak, A. M.; Tu, K. N. “Interaction between the Kirkendall effect and the inverse Kirkendall effect in nanoscale particles”, Acta Mater. 2009, 57, 3367. 59. Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. “Annealing−free fabrication of highly oxidation−resistive copper nanowire composite conductors for photovoltaics”, NPG ASIA MATER. 2014, 6, e105. 60. Kwon, Y.; Soon, A.; Han, H.; Lee H. “Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting”, J. Mater. Chem. A 2015, 3, 156. 61. Zhang, Z.; Wang, P. “Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy” J. Mater. Chem. 2012, 22, 2456. 62. Riyanto, Othman M. R. “Electrosynthesis and characterization of Cu(OH)2 nanoparticle using Cu and Cu−PVC electrodes in alkaline solution”, Int. J. Electrochem. Sci. 2015, 10, 4911. 63. Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES”, Surf Interface Anal. 1996, 24,811. 64. Zhao, Y.; Zhang, Y.; Zhao, H.; Li, X.; Li Y.; Wen, L.; Yan, Z.; Huo, Z. “Epitaxial growth of hyper−branched Cu/Cu2O/CuO core−shell nanowire heterostructures for lithium−ion battery”, Nano Res. 2015, 8, 2763. 65. Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. “Highly active oxide photocathode for photoelectrochemical water reduction”, Nat. Mater. 2011, 10, 456. 66. Xu, X.; Yang, H.; Liu, Y. “Self−assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2–NaOH aqueous systems”, CrystEngComm 2012, 14, 5289. 67. Jagminas, A.; Kuzmarskyt, J.; Niaura, G. "Electrochemical formation and characterization of copper oxygenous compounds in alumina template from ethanolamine solutions", Appl. Surf. Sci. 2002, 201, 129. 68. Chen, K.; Xue, D. "Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials", J. Phys. Chem. C 2013, 117, 22576. 69. Xu, L.; Yang, Y.; Hu, Z. W.; Yu, S. H. "Comparison Study on the Stability of Coppe Nanowires and Their Oxidation Kinetics in Gas and Liquid", ACS Nano 2016, 10, 3823. 70. Alvarez, S.; Ye, S.; Flowers, P. F.; Wiley, B. J. "Photocatalytic Growth of Copper Nanowires from Cu2O Seeds", Chem. Mater. 2015, 27, 570. 71. Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; N. Kondo, J.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A. “Cu2O as a photocatalyst for overall water splitting under visible light irradiation”, Chem. comm. 1998, 357. 72. Zhang, X.; Song, J.; Jiao, J.; Mei, X. “Preparation and photocatalytic activity of cuprous oxides” Solid State Sci. 2010, 12, 1215. 73. Huang, L.; Peng, F.; Wang, H.; Yu, H.; Li, Z. “Preparation and characterization of Cu2O/TiO2 nano–nano heterostructure photocatalysts”, Catal. Commun. 2009, 10, 1839. 74. Hsu, Y. K.; Chen, Y. C.; Lin, Y. G. "Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes", J. Electroanal. Chem. 2012, 673, 43. 75. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. “Synthesis of tetrahexahedral platinum nanocrystals with high−index facets and high electro−oxidation activity”, Science 2007, 316, 732. 76. Tao, F.; Salmeron, M. “In situ studies of chemistry and structure of materials in reactive environments”, Science 2011, 331, 171. 77. Zhou, G. W.; Yang, J. C. “In situ UHV−TEM investigation of the kinetics of initial stages of oxidation on the roughened Cu(110) surface”, Surf. Sci. 2004, 559, 100 (2004). 78. Strandlund, H.; Larsson, H. “Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples”, Acta Mater. 2004, 52, 4695. 79. Jiang, Y.; Adams, J. B.; Sun, D. “Benzotriazole Adsorption on Cu2O(111) Surfaces: A First−Principles Study”, J. Phys. Chem. B 2004, 108, 12851. 80. Polatoglou, H. M.; Methfessel, M.; Scheffler, M. “Vacancy−formation energies at the (111) surface and in bulk Al, Cu, Ag, and Rh”, Phys. Rev. B 1993, 48, 1877. 81. Firmansyah, D. A.; Kim, T.; Kim, S.; Sullivan, K.; Zachariah, M. R.; Lee, D. “Crystalline Phase Reduction of Cuprous Oxide (Cu2O) Nanoparticles Accompanied by a Morphology Change during Ethanol−Assisted Spray Pyrolysis”, Langmuir 2009, 25, 706. 82. Zhou, G. W. “TEM investigation of interfaces during cuprous island growth”, Acta Mater. 2009, 57, 4432. 83. Kuna, J. J.; Voïtchovsky, K.; Singh, C.; Jiang, H.; Mwenifumbo, S.; Ghorai, P. K.; Stevens, M. M.; Glotzer, S. C.; Stellacci, F. “The effect of nanometer−scale structure on interfacial energy”, Nat. Mater. 2009, 8, 837. 84. Cahn, J. W. “The kinetics of grain boundary nucleated reactions”, Acta Metall. 1956, 4, 449. 85. Demkowicz, M. J., Anderoglua, O., Zhang, X., Misra, A. “The influence of Σ3 twin boundaries on the formation of radiation−induced defect clusters in nanotwinned Cu”, J. Mater. Res.2011, 26, 1666.
|