帳號:guest(18.191.222.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃俊龍
作者(外文):Huang, Chun-Lung
論文名稱(中文):高密度奈米雙晶銅線之腐蝕與氧化特性研究
論文名稱(外文):Corrosion and oxidation behavior of Cu nanowires with high-density nanoscale twin boundaries
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):高振宏
李紫原
吳文偉
林士剛
口試委員(外文):Kao, Cheng-Heng
Lee, Chi-Young
Wu, Wen-Wei
Lin, Shih-Kang
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031812
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:107
中文關鍵詞:奈米線雙晶氧化克肯達爾效應
外文關鍵詞:nanowirestwin boundaryoxidationKirkendall effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:547
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微電子積體電路元件製程演變至今,金屬銅已經取代金屬鋁成為導線製程的首選。然而,銅導線雖有較高的導電率與低製造成本,但卻也有容易氧化與對矽有高擴散性…等本質上的缺點。這些缺點將影響元件效能並導致元件可靠度的問題。具有高密度奈米等級雙晶的銅金屬由於其特殊的物理性質,例如:有極高的機械拉伸強度、優秀的抗電遷移特性與良好的熱穩定性而吸引學界與產業界的注意。然而,雖已有不少的研究發現雙晶銅金屬薄膜有不錯的化學穩定性。但是鮮少有研究提及雙晶銅奈米線在腐蝕環境中的表面化學穩定性。本研究探討高密度雙晶銅奈米線於含水分之空氣、純水及酸性水溶液環境下的反應性與結構穩定性。利用穿透式電子顯微鏡拍攝銅奈米線在氧化環境中表面結構隨時間之變化,且比較雙晶與多晶銅奈米線的表面形貌。我們發現具雙晶結構銅奈米線表面呈現鋸齒狀且有較低的表面原子階密度。而多晶銅奈米線的表面在腐蝕測試後多帶有粗糙的表面特徵且有較高的表面原子階密度。由此可推論銅奈米線的化學穩定性會受到雙晶結構影響,對於化學腐蝕反應呈現較佳的腐蝕阻抗。而在純水或含水空氣的環境中,亦可發現到多晶銅奈米線之表面極易產生氧化亞銅相。由於氧化亞銅相具有光敏特性。一但受到光照影響,多晶銅奈米線表面的氧化亞銅相將被還原成純銅。因此,可發現到多晶銅奈米線之周圍散佈純銅奈米粒子且奈米線本體也被掏空殆盡。從上述的反應中,我們發現到雙晶銅奈米線有良好的光電化學反應阻抗。此外,本反應亦在多晶銅奈米線中伴隨著有克肯達爾效應(Kirkendall effect)的發生。實驗結果顯示雙晶銅奈米線對於克肯達爾效應具有抑制效果。從動力學機制的觀點,我們發現在雙晶銅奈米線表面具有較低的化學反應性且金屬銅/氧化亞銅界面處能有效且有序吸收氧化反應過程中所產生的空位(Vacancy)缺陷,因此對於克肯達爾孔洞之生成有顯著的抑制效果。
Copper (Cu) is an important conductive material used in microelectronic integrated-circuit devices due to its high electrical conductivity and low cost. However, Cu also suffers some intrinsic drawbacks such as oxidation and fast atomic diffusion, which would degrade device performance and even cause reliability problems. Cu metallization with highly dense nanoscale twin boundaries (nanotwinned Cu) have received wide attention because it possesses some excellent properties such as high tensile strength, good electromigration resistance and excellent thermal stability. However, few studies have addressed the chemical property of twin-modified Cu surface, especially for the nanotwinned Cu nanowires (nt-CuNWs). In this study, we investigate the chemical reactivity and structure stability of nt-CuNWs under moistured air ambient, water and acidic solution. The microstructural evolution and oxide formation behavior of nt-CuNWs were ex-situ monitored by transmission electron microscopy. By comparing the nt-CuNWs and nanocrystalline CuNWs (nc-CuNWs), it is found that the former exhibits a zig-zag faceted structure with very low atomic step density, while the latter have an atomically rough surface with high atomic step density. The nt-CuNWs appear to have reduced chemical reactivity and enhanced resistance to chemical corrosion. On the other hand, the nc-CuNWs were gradually oxidized by forming cuprous oxide (Cu2O) under water or moisture environment, which decomposed and transformed into Cu nanoparticles when exposed to visible light. According to the photoelectrochemical reaction of Cu/Cu2O system, we found that the nt-CuNWs demonstrate high chemical stability against the photolytic reaction. A kinetic mechanism based on the low chemical reactivity of twin-modified Cu surface and effective Cu/Cu2O interfacial vacancy sinking is proposed to explain why the nt-CuNWs are resistant against Kirkendall void formation.
誌謝 I
Abstract II
摘要 III
目錄 IV
圖目錄 VII
表目錄 XVI
第一章:緒論 1
1.1簡介 1
1.2研究動機 3
第二章:文獻回顧 5
2.1奈米雙晶銅膜的製造方式 5
2.1.1脈衝電流電鍍法 5
2.1.2物理氣相沉積法 10
2.1.3塑性變形法 14
2.1.4離子轟擊技術 17
2.2奈米線的合成方式 20
2.2.1銅奈米線合成法與其微結構 20
2.2.2多孔陽極氧化鋁模板之生成機制 25
2.2.3陽極氧化製程參數對多孔陽極氧化鋁模板之影響 27
2.2.4雙晶金屬奈米線之製備方式 30
2.3 奈米雙晶銅膜與奈米線之特性 33
2.3.1 奈米雙晶銅膜與奈米線之機械性質 33
2.3.2 奈米雙晶銅膜之抗電遷移特性 37
2.3.3奈米雙晶銅膜之化學穩定性 40
2.3.4 奈米雙晶銅膜在其它極端環境中之特性 43
第三章:實驗設計 46
3.1實驗材料 46
3.2實驗流程 47
3.2.1多孔陽極氧化鋁模板的製作 47
3.2.2自製多孔陽極氧化鋁模板輔助脈衝電流電鍍製程 47
3.2.3商業化多孔陽極氧化鋁模板輔助脈衝電流電鍍製程 48
3.2.4不同直徑的銅奈米線在強酸溶液下之浸入測試 48
3.2.5在不同的環境氣氛下之銅奈米線時效測試 48
3.2.6在水環境中誘發奈米粒子的生成 49
3.2.7銅奈米線橫截面之穿透式電子式顯微鏡試片的製備 50
3.3銅奈米線之性質分析 50
3.3.1銅奈米線之微結構鑑定與分析 50
3.3.2在不同氣氛影響下的銅奈米線表面之X−ray光電子能譜 51
第四章:雙晶銅奈米線在酸性溶液中之化學穩定性 53
4.1銅奈米線之微結構鑑定 53
4.2不同直徑之銅奈米線的腐蝕測試 57
4.3雙晶晶界與奈米線表面之三節點處的Mykura’s分析 63
第五章:雙晶銅奈米線之光電化學反應 66
5.1銅奈米線在不同氣氛下之時效測試 66
5.2銅奈米線之X−ray光電子能譜儀分析 70
5.3 銅奈米線的照光效應 72
5.4在去離子水環境中誘發氧化亞銅的自身還原效應的生成 75
第六章:雙晶結構對銅奈米線氧化產生克肯達爾孔洞之抑制效應 85
6.1銅奈米線表面原子階密度的統計與計算 85
6.2氧化的銅奈米線之孔洞化及孔洞生成抑制現象 90
6.3多晶與雙晶銅奈米線在高溫氧化環境下之顯微結構變化 93
第七章:結論與未來展望 97
7.1結論 97
7.2未來展望 98
參考文獻 99
1. Moore, G. E. “Cramming more components onto integrated circuits”, Electronics 1965, 38, 114.
2. Kondo, S.; Sakuma, N.; Homma Y.; Ohashi, N. “, Slurry chemical corrosion and galvanic corrosion during copper chemical mechanical polishing”, Jpn. J. Appl. Phys. 2000, 39, 6216.
3. Kim, S. C.; Shim, C. M.; Hong, J. H.; Lee, H. C.; Han, J. W.; Kim, K. H.; Kim, Y. M. “Copper hillock induced copper diffusion and corrosion behavior in a dual damascene process”, Electrochem. Solid−State Lett. 2007, 10, H193.
4. Shimada, M.; Kokawa, H.; Wang, Z. J.; Sato, Y. S.; Karibe, I. “Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin−induced grain boundary engineering”, Acta Mater. 2002, 50, 2331.
5. Wood, E. L.; Sansoz, F. “Growth and properties of coherent twinning superlattice nanowires”, Nanoscale 2012, 4, 5268.
6. Tan, C. M. “Electromigration in ULSI Interconnections”, World Scientific Publishing Co. Pte. Ltd., Singapore 2010.
7. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. “One−dimensional nanostructures: synthesis, characterization, and applications”, Adv. Mater. 2003, 15, 353.
8. Yin, Y,; Rioux, R. M.; Erdonmez, C. K.; Hughes S.; Somorjai, G. A.; Alivisatos A. P. “Formation of hollow nanocrystals through the nanoscale Kirkendall effect”, Science 2004, 304, 711.
9. Tu, K. N. “Recent advances on electromigration in very−large−scale−integration of interconnects”, J. Appl. Phys. 2003, 94, 5451.
10. Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. “Ultrahigh strength and high electrical conductivity in copper”, Science 2004, 304, 422.
11. Xu, D.; Kwan, W. L.; Chen, K.; Zhang, X.; Ozolins, V.; Tu, K. N. “Nanotwin formation in copper thin films by stress strain relaxation in pulse electrodeposition”, Appl. Phys. Lett. 2007, 91, 254105.
12. Liao, C. N.; Lin, C. Y.; Huang, C. L.; Lu, Y. S. “Morphology, texture and twinning structure of Cu films prepared by Low−temperature electroplating”, J. Electrochem. Soc. 2013, 160, D3070.
13. Liu, T. C.; Liu, C. M.; Hsiao, M. Y.; Lu, J. L.; Huang, Y. S.; Chen C. “Fabrication and Characterization of (111)−Oriented and Nanotwinned Cu by Dc Electrodeposition”, Cryst. Growth Des. 2012, 12, 5012.
14. Liu, C. M.; Lin, H. W.; Lu, C. L.; Chen, C. “Effect of grain orientations of Cu seed layers on the growth of <111>−oriented nanotwinned Cu”, Sci Rep. 2014, 4, 6123
15. Zhang, X.; Wang, H.; Chen, X. H.; Lu, L.; Lu, K.; Hoagland, R. G.; Misra, A. “High−strength sputter−deposited Cu foils with preferred orientation of nanoscale growth twins”, Appl. Phys. Lett. 2006, 88, 173116.
16. Zhang, X.; Misra, A.; Wang, H.; Shen, T. D.; Nastasi, M.; Mitchell, T. E.; Hirth, J. P.; Hoagland, R. G.; Embury, J. D. “Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning”, Acta Mater. 2004, 52, 995.
17. Bufford, D.; Wang, H.; Zhang, X. “High strength, epitaxial nanotwinned Ag films”, Acta Mater. 2011, 59, 93.
18. Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H. “Influence of deposition rate on the formation of growth twins in sputter−deposited 330 austenitic stainless steel films”, Appl. Phys. Lett. 2007, 90, 153101.
19. Shute, C. J.; Myers, B. D.; Xie, S.; Barbee Jr., T. W.; Hodge, A. M.; Weertman, J. R. “Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning”, Scr. Mater. 2009, 60, 1073.
20. Anderoglu, O.; Misra, A.; Wang, H.; Ronning, F.; Hundley, M. F.; Zhang, X. “Epitaxial nanotwinned Cu films with high strength and high conductivity”, Appl. Phys. Lett. 2008, 93, 083108.
21. Zhu, Z. T.; Narayan, J.; Hirth, J. P.; Mahajan, S.; Wu, X. L.; Liao, X. Z. “Formation of single and multiple deformation twins in nanocrystalline fcc metals”, Acta Mater. 2009, 57, 3763.
22. Lu, K.; Lu, J. “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment”, Mater. Sci. Eng. A 2004, 38, 376.
23. Wang, K.; Tao, N. R.; Liu, G.; Lu, J.; Lu, K. “Plastic strain−induced grain refinement at the nanometer scale in copper”, Acta Mater. 2006, 54, 5281.
24. Chan, T. C.; Chen, Y. Z.; Chueh, Y. L.; Liao, C. N. “Large−scale nanotwins in Cu films/Cu nanowires via stress engineering by a high−energy ion beam bombardment process: growth and characterization”, J. Phys. Chem. C 2014, 2, 9805.
25. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. “One−dimensional nanostructures: synthesis, characterization, and applications”, Adv. Mater. 2003, 15, 353.
26. Rao, C. N. R.; Deepak, F. L.; Gundiah, G.; Govindaraj A. “Inorganic nanowires”, Prog. Solid State Chem. 2003, 31, 5.
27. Rathmell, A.R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J. “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting Films”, Adv. Mater. 2010, 22, 3558.
28. Rathmell, A.R.; Wiley, B.J. “The Synthesis and Coating of Long, Thin Copper Nanowires to make Flexible, Transparent Conducting Films on Plastic Substrates”, Adv. Mater. 2011, 23, 4798.
29. Zhong, S.; Koch, T.; Wang, M.; Scherer, T.; Walheim, S.; Hahn H.; Schimmel, T.; “Nanoscale twinned copper nanowire formation by direct electrodeposition”, Small 2009, 5, 2265.
30. Dong, J. P.; Ren, L. X.; Zhang, Y.; Cui, X. L.; Hu, P. F.; Xu, J. Q. “Direct electrodeposition of cable−like CuO@Cu nanowires array for non−enzymatic sensing”, Talanta 2015, 132, 719.
31. Jani, A. M. M.; Losic, D.; Voelcker, N. H. “Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications”, Prog. Mater. Sci. 2013, 58, 636.
32. Jessensky, O.; Müller, F.; Gösele, U. “Self−organized formation of hexagonal pore arrays in anodic alumina”, Appl. Phys. Lett. 1998, 72, 1173.
33. Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self−organization in anodic alumina”, J Appl Phys. 1998, 84, 6023.
34. Sauer, G.; Brehm, G.; Schneider, S. “Highly ordered monocrystalline silver nanowire arrays”, J. Appl. Phys. 2002, 51, 3243.
35. Liao, C. N.; Lu, Y. C.; Xu, D. “Modulation of crystallographic texture and twinning structure of Cu nanowires by electrodeposition”, J. Electrochem. Soc. 2013, 160, D207.
36. Cui, B. Z.; Han, K.; Xin, Y.; Waryoba, D.R.; Mbaruku, A.L. “Highly textured and twinned Cu films fabricated by pulsed electrodeposition”, Acta Mater. 2007, 55, 4429.
37. Chan, T. C.; Lin, Y. M.; Tsai, H. W.; Wang, M. Z. M.; Liao, C. N.; Chueh, Y. L. “Growth of large−scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance”, Nanoscale 2014, 6, 7332.
38. Anderoglu, O.; Misra, A.; Ronning, F.; Wang, H.; Zhang, X. “Significant enhancement of the strength−to−resistivity ratio by nanotwins in epitaxial Cu films”, J. Appl. Phys. 2009, 106, 024313.
39. Jang, D. Li, X.; Gao, H.; Greer, J. R. “Deformation mechanisms in nanotwinned metal nanopillars”, Nature Nanotech. 2012, 7, 594.
40. Lu, L.; Chen, X.; Huang, X.; Lu, K. “Revealing the Maximum Strength in Nanotwinned Copper”, Science 2009, 323, 607.
41. Chen, K. C.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Observation of Atomic Diffusion at Twin−Modified Grain Boundaries in Copper”, Science 2008, 321, 1066.
42. Chen, H. P.; Huang, C. W.; Wang, C. W.; Wu, W. W.; Liao, C. N.; Chen, L. J.; Tu, K. N. “Optimization of the nanotwin−induced zigzag surface of copper by electromigration”, Nanoscale 2016, 8, 2584.
43. Meng, G. Z.; Shao, Y. W.; Zhang, T.; Zhang, Y.; Wang F. H. “Synthesis and corrosion property of pure Ni with a highly dense of nanoscale twins”, Electrochim. Acta. 2008, 53, 5923.
44. Meng, G. Z.; Wei, L. Y.; Shao, Y. W.; Zhang, T.; Wang, F. H.; Dong, C. F.; Li, X. A. “High Pitting Corrosion Resistance of Pure Aluminum with Nanoscale Twins”, J. Electrochem. Soc. 2009, 156, C240.
45. Meng, G. Z.; Sun, F. L.; Shao, Y. W.; Zhang, T.; Wang, F. H.; Dong, C. F.; Li, X. A. “Influence of nano−scale twins (NT) structure on passive film formed on nickel”, Electrochim. Acta. 2010, 55, 2575.
46. Zhao, Y.; Cheng, I.C.; Kassner, M.E.; Hodge, A.M. “The effect of nanotwins on the corrosion behavior of copper”, Acta Mater. 2013, 67, 181.
47. LaGrange, T.; Reed, B. W.; Wall, M.; Mason, J.; Barbee, T.; Kumar, M. “Topological view of the thermal stability of nanotwinned copper”, Appl. Phys. Lett. 2013, 102, 011905.
48. Anderoglu, O.; Misra, A.; Wang, H.; Zhang, X. “Thermal stability of sputtered Cu films with nanoscale growth twins”, J. Appl. Phys. 2008, 103, 094322.
49. Chen, Y.; Yu, K. Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X. “Damage−tolerant nanotwinned metals with nanovoids under radiation environments”, Nat. Commun. 2015, 6, 1.
50. Chan, T. C.; Chueh, Y. L.; Liao, C. N. “Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition”, Cryst. Growth Des. 2011, 11, 4970.
51. Robertson, W. M.; Shewmon, P. G. “Variation of surface tension with surface orientation in copper”, Trans. Metall. Soc. AIME 1962, 224, 804.
52. Mykura, H. “Twin−boundary free energies and the variation of surface free energies with crystallographic orientation”, Acta Metall. 1957, 5, 346.
53. Feng, Z.; Marks, C. R.; Barkatt, A. “Oxidation-rate excursions during the oxidation of copper in gaseous environments at moderate temperatures”, Oxid MET. 2003, 60, 393.
54. Cocke, D. L.; Chuah, G. K.; Kruse, N.; Block, J. H.; “Oxidation and surface copper oxide stability investigated by pulsed field desorption mass spectrometry”, Appl. Surf. Sci. 1995, 84, 153.
55. Nakamura, R.; Tokozakura, D.; Nakajima, H.; Lee, J. G.; Mori, H. “Hollow oxide formation by oxidation of Al and Cu nanoparticles”, J. Appl. Phys. 2007, 101, 074303.
56. Cabrera, N.; Mott, N. F. “Theory of the oxidation of metals”, Rep. Prog. Phys. 1949, 12, 163.
57. Lim, J. W.; Iijima, J.; Zhu, Y.; Yoo, J. H.; Choi, G. S.; Mimura, K.; Isshiki, M. “Nanoscale investigation of long−term native oxidation of Cu films”, Thin Solid Films 2008, 516, 4040.
58. Gusak, A. M.; Tu, K. N. “Interaction between the Kirkendall effect and the inverse Kirkendall effect in nanoscale particles”, Acta Mater. 2009, 57, 3367.
59. Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. “Annealing−free fabrication of highly oxidation−resistive copper nanowire composite conductors for photovoltaics”, NPG ASIA MATER. 2014, 6, e105.
60. Kwon, Y.; Soon, A.; Han, H.; Lee H. “Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting”, J. Mater. Chem. A 2015, 3, 156.
61. Zhang, Z.; Wang, P. “Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy” J. Mater. Chem. 2012, 22, 2456.
62. Riyanto, Othman M. R. “Electrosynthesis and characterization of Cu(OH)2 nanoparticle using Cu and Cu−PVC electrodes in alkaline solution”, Int. J. Electrochem. Sci. 2015, 10, 4911.
63. Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. “Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES”, Surf Interface Anal. 1996, 24,811.
64. Zhao, Y.; Zhang, Y.; Zhao, H.; Li, X.; Li Y.; Wen, L.; Yan, Z.; Huo, Z. “Epitaxial growth of hyper−branched Cu/Cu2O/CuO core−shell nanowire heterostructures for lithium−ion battery”, Nano Res. 2015, 8, 2763.
65. Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. “Highly active oxide photocathode for photoelectrochemical water reduction”, Nat. Mater. 2011, 10, 456.
66. Xu, X.; Yang, H.; Liu, Y. “Self−assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2–NaOH aqueous systems”, CrystEngComm 2012, 14, 5289.
67. Jagminas, A.; Kuzmarskyt, J.; Niaura, G. "Electrochemical formation and characterization of copper oxygenous compounds in alumina template from ethanolamine solutions", Appl. Surf. Sci. 2002, 201, 129.
68. Chen, K.; Xue, D. "Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials", J. Phys. Chem. C 2013, 117, 22576.
69. Xu, L.; Yang, Y.; Hu, Z. W.; Yu, S. H. "Comparison Study on the Stability of Coppe Nanowires and Their Oxidation Kinetics in Gas and Liquid", ACS Nano 2016, 10, 3823.
70. Alvarez, S.; Ye, S.; Flowers, P. F.; Wiley, B. J. "Photocatalytic Growth of Copper Nanowires from Cu2O Seeds", Chem. Mater. 2015, 27, 570.
71. Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; N. Kondo, J.; Domen, K.; Hara, M.; Shinohara, K.; Tanaka, A. “Cu2O as a photocatalyst for overall water splitting under visible light irradiation”, Chem. comm. 1998, 357.
72. Zhang, X.; Song, J.; Jiao, J.; Mei, X. “Preparation and photocatalytic activity of cuprous oxides” Solid State Sci. 2010, 12, 1215.
73. Huang, L.; Peng, F.; Wang, H.; Yu, H.; Li, Z. “Preparation and characterization of Cu2O/TiO2 nano–nano heterostructure photocatalysts”, Catal. Commun. 2009, 10, 1839.
74. Hsu, Y. K.; Chen, Y. C.; Lin, Y. G. "Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes", J. Electroanal. Chem. 2012, 673, 43.
75. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. “Synthesis of tetrahexahedral platinum nanocrystals with high−index facets and high electro−oxidation activity”, Science 2007, 316, 732.
76. Tao, F.; Salmeron, M. “In situ studies of chemistry and structure of materials in reactive environments”, Science 2011, 331, 171.
77. Zhou, G. W.; Yang, J. C. “In situ UHV−TEM investigation of the kinetics of initial stages of oxidation on the roughened Cu(110) surface”, Surf. Sci. 2004, 559, 100 (2004).
78. Strandlund, H.; Larsson, H. “Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples”, Acta Mater. 2004, 52, 4695.
79. Jiang, Y.; Adams, J. B.; Sun, D. “Benzotriazole Adsorption on Cu2O(111) Surfaces:  A First−Principles Study”, J. Phys. Chem. B 2004, 108, 12851.
80. Polatoglou, H. M.; Methfessel, M.; Scheffler, M. “Vacancy−formation energies at the (111) surface and in bulk Al, Cu, Ag, and Rh”, Phys. Rev. B 1993, 48, 1877.
81. Firmansyah, D. A.; Kim, T.; Kim, S.; Sullivan, K.; Zachariah, M. R.; Lee, D. “Crystalline Phase Reduction of Cuprous Oxide (Cu2O) Nanoparticles Accompanied by a Morphology Change during Ethanol−Assisted Spray Pyrolysis”, Langmuir 2009, 25, 706.
82. Zhou, G. W. “TEM investigation of interfaces during cuprous island growth”, Acta Mater. 2009, 57, 4432.
83. Kuna, J. J.; Voïtchovsky, K.; Singh, C.; Jiang, H.; Mwenifumbo, S.; Ghorai, P. K.; Stevens, M. M.; Glotzer, S. C.; Stellacci, F. “The effect of nanometer−scale structure on interfacial energy”, Nat. Mater. 2009, 8, 837.
84. Cahn, J. W. “The kinetics of grain boundary nucleated reactions”, Acta Metall. 1956, 4, 449.
85. Demkowicz, M. J., Anderoglua, O., Zhang, X., Misra, A. “The influence of Σ3 twin boundaries on the formation of radiation−induced defect clusters in nanotwinned Cu”, J. Mater. Res.2011, 26, 1666.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *