帳號:guest(18.191.150.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊東翰
作者(外文):Yang, Tung-Han
論文名稱(中文):定量分析金屬奈米晶體的成核、成長、熱穩定與光催 化特性
論文名稱(外文):Toward a Quantitative Understanding of the Nucleation, Growth, and Thermal Stability of Colloidal Metal Nanocrystals with the Photocatalytic Application
指導教授(中文):吳振名
李奕賢
指導教授(外文):Wu, Jenn-Ming
Lee, Yi-Hsien
口試委員(中文):果尚志
陳力俊
郭俊宏
張嘉升
口試委員(外文):Gwo, Shangjr
Chen, Lih-Juaan
Kuo, Chun-Hong
Chang, Chia-Seng
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031808
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:185
中文關鍵詞:金屬奈米材料還原反應合成動力學
外文關鍵詞:metalnanomaterialsreduction reactionsynthesiskinetics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:823
  • 評分評分:*****
  • 下載下載:26
  • 收藏收藏:0
本論文致力發展一套定量的分析方法去深入了解金屬奈米晶體的成核、成長、熱穩
定性與光催化特性。本論文成功利用吸收光譜技術定量解析反應前驅物在晶體生長中的反
應還原動力特性,並建立動力學模型去解析反應前驅物的還原路徑。基於動力學的分析,
成功發現反應前驅物可能先在溶液中就被還原成原子(溶液還原路徑)或是在金屬奈米晶體
的表面被還原成原子(表面還原路徑)。再者,藉著使用不同晶體當作種子,我們進一步達
成定量了解不同晶面的成長速率與能障高度。了解金屬奈米晶體的生長機制後,我們緊接
著利用臨場電子顯微鏡分析技術成功了解金屬奈米晶體的熱穩定性。最後,我們展示如何
利用雙官能基的有機架橋分子成功整合金屬奈米晶體與一維半導體形成異質結構。此異質
結構擁有優異且穩定的光催化特性。
This dissertation is focused on the development of a quantitative analysis of the nucleation, growth, and thermal stability of metal nanocrystals with the photocatalytic application. In a first project, I quantitatively analyze the reaction kinetics involved in the seed-mediated growth of metal nanocrystals using a spectroscopy method and further had it correlated to the reduction pathway (solution reduction vs. autocatalytic surface reduction) of a salt precursor. Based on the quantitative data, I conclude that the pathway is mainly determined by the reduction kinetics involved in the synthesis. In a second project, I further demonstrate that autocatalytic surface reduction can be employed to enable the formation of metal nanocrystals with predictable and well-controlled shapes through seed-mediated growth. In a third project, with the concave, multiply-twinned icosahedral metal nanocrystals as an example, I develop a method for quantifying the thermal stability of metal nanocrystals by using in situ transmission electron microscopy, to identify the equilibration pathways of this far-from-equilibrium structure. In a fourth project, I demonstrate an approach to integrate the metal nanocrystals with nanostructured semiconductors for efficient conversion of solar to chemical energy application. The quantitative result suggests that the photocatalytic reaction rate increases non-linearly with the metal content due to the plasmonic coupling effects of the neighboring metal nanocrystals, which is consistent with the electromagnetic field simulations. The quantitative understanding achieved in this dissertation represents a major step forward toward the rational design and deterministic synthesis of colloidal metal nanocrystals with the photocatalytic application.
Table of Contents
中文摘要 IV
英文摘要 V
Chapter
1. Introduction 1
1.1 Shape-Controlled Synthesis of Colloidal Metal Nanocrystals 1
1.2 Quantitative Analysis of the Reduction kinetics of a Salt Precursor 7
1.2.1 Reduction Reaction 7
1.2.2 Reduction Kinetics 9
1.2.3 Techniques for Quantifying the Reduction Kinetics 11
1.3 Scope of This Work 15
1.4 References 17

2. Toward a Quantitative Understanding of the Reduction Pathways of a Salt Precursor in the Synthesis of Metal Nanocrystals 21
2.1 Introduction 21
2.2 Results and Discussion 21
2.3 Summary 34
2.4 Supporting Information 34
2.5 References 68

3. Autocatalytic Surface Reduction and Its Role in Controlling Seed-Mediated Growth of Metal Nanocrystals 71
3.1 Introduction 71
3.2 Results and Discussion 72
3.3 Summary 85
3.4 Supporting Information 86
3.5 References 108

4. Quantifying the Thermal Stability of Metal Nanocrystals: An Investigation on the Surface and Bulk Reconstructions of Concave, Multiply-Twinned Icosahedra 113
4.1 Introduction 113
4.2 Results and Discussion 115
4.3 Summary 123
4.4 Supporting Information 123
4.5 References 126

5. Ultrahigh Density Unaggregated Metal Nanocrystals on Semiconductor Nanostructures Function as Photocatalysts for Efficient Conversion of Solar to Chemical Energy 129
5.1 Introduction 129
5.2 Results and Discussion 131
5.3 Summary 156
5.4 Supporting Information 157
5.5 References 177

6. Conclusions and Future Directions 182
6.1 Conclusions 182
6.2 Future Directions 184
6.3 References 185
Chapter 1
1. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Science, 1996, 272, 1924-1926.
2. Y. Sun, and Y. Xia, Science, 2002, 298, 2176-2179.
3. L. Zhang, L. T. Roling, X. Wang, M. Vera, M. Chi, J. Liu, S. I. Choi, J. P, J. A. Herron, Z. Xie, M. Mavrikakis, and Y. Xia, Science, 2015, 349, 412-416.
4. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Nature Mater., 2009, 8, 935-939.
5. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed., 2009, 48, 60-103.
6. Y. Xia, X. Xia, and H. C. Peng, J. Am. Chem. Soc., 2015, 137, 7947-7966.
7. P. Liu, R. Qin, G. Fu, and N. Zheng, J. Am. Chem. Soc., 2017, 139, 2122-2131.
8. K. D. Gilroy, A. Ruditskiy, H. C. Peng, D. Qin, and Y. Xia, Chem. Rev., 2016, 116, 10414-10472.
9. Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, Angew. Chem. Int. Ed., 2017, 56, 60-95.
10. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science, 2007, 315, 493-497.
11. M. Crespo-Quesada, A. Yarulin, M. Jin, Y. Xia, and Lioubov Kiwi-Minsker, J. Am. Chem. Soc., 2011, 133, 12787-12794.
12. K. D. Gilroy, H. C. Peng, X. Yang, A. Ruditskiy, and Y. Xia, Chem. Commun., 2017, 53, 4530-4541.
13. A. Ruditskiy, H. C. Peng, and Y. Xia, Annu. Rev. Chem. Biomol. Eng., 2016.7, 327-348.
14. Z. Quan, Y. Wang, and J. Fang, Acc. Chem. Res., 2013, 46, 191-202.
15. H. Zhang, M. Jin, and Y. Xia, Angew. Chem. Int. Ed., 2012, 51, 7656-7673.
16. V. K. Lamer, and R. H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847-4854.
17. J. Lee, J. Yang, S. G. Kwon and T. Hyeon, Nat. Rev. Mater., 2016, 1, 1-16.
18. M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B, 2005, 109, 22192-22200.
19. T. Ming, W. Feng, Q. Tang, F. Wang, L. Sun, J. Wang, and C. Yan, J. Am. Chem. Soc., 2009, 131, 16350-16351.
20. M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, J. Am. Chem. Soc., 2012, 134, 14542-14554.
21. X. Xia, S. I. Choi, J. A. Herron, N. Lu, J. Scaranto, H. C. Peng, J. Wang, M. Mavrikakis, M. J. Kim, and Y. Xia, J. Am. Chem. Soc., 2013, 135, 15706-15709.
22. H. Huang, Y. Wang, A. Ruditskiy, H. C. Peng, X. Zhao, L. Zhang, J. Liu, Z. Ye, and Y. Xia, ACS Nano, 2014, 8, 7041-7050.
23. Y. Wang, H. C. Peng, J. Liu, C. Z. Huang, and Y. Xia, Nano Lett., 2015, 15, 1445-1450.
24. A. Ruditskiy, M. Zhao, K. D. Gilroy, M. Vara, and Y. Xia, Chem. Mater., 2016, 28, 8800-8806.
25. S. C. Hsu, Y. C. Chuang, B. T. Sneed, D. A. Cullen, T. W. Chiu, and C. H. Kuo, Nano Lett., 2016, 16, 5514-5520.
26. A. Y. Timoshkin, and A. G. Kudrev, Russ. J. Inorg. Chem., 2012, 57, 1362-1370.
27. M. Vara, P. Lu, X. Yang, C. T. Lee, and Y. Xia, Chem. Mater., 2017, 29, 4563-4571.
28. B. Wiley, Y. Sun, and Y. Xia, Langmuir, 2005, 21, 8078-8080.
29. B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Nano Lett., 2004, 4, 1733-1739.
30. M. Zhou, H. Wang, M. Vara, Z. D. Hood, M. Luo, T. H. Yang, S. Bao, M. Chi, P. Xiao, Y. Zhang, and Y. Xia, J. Am. Chem. Soc., 2016, 138, 12263-12270.
31. C. Zhu, J. Zeng, J. Tao, M. C. Johnson, I. Schmidt-Krey, L. Blubaugh, Y. Zhu, Z. Gu, and Y. Xia, J. Am. Chem. Soc., 2012, 134, 15822-15831.
32. J. Zeng, C. Zhu, J. Tao, M. Jin, H. Zhang, Z. Y. Li, Y. Zhu, and Y. Xia, Angew. Chem. Int. Ed., 2012, 51, 2354-2358.
33. H. C. Peng, J. Park, L. Zhang, and Y. Xia, J. Am. Chem. Soc., 2015, 137, 6643-6652.
34. T. Lv, X. Yang, Y. Zheng, H. Huang, L. Zhang, J. Tao, L. Pan, and Y. Xia, J. Phys. Chem. C, 2016, 120, 20768-20774.
35. S. Xie, H. C. Peng, N. Lu, J. Wang, M. J. Kim, Z. Xie, and Y. Xia. J. Am. Chem. Soc., 2013, 135, 16658-16667.
36. K. Pacławski, and T. Sak, J. Min. Metall. Sect. B-Metall., 2015, 51, 133-142.
37. S. K. Boruah, P. K. Boruah, P. Sarma, C. Medhi, and O. K. Medhi, Adv. Mat. Lett., 2012, 3, 481-486.
38. M. Harada, and S. Kizaki, Cryst. Growth Des., 2016, 16, 1200-1212.
39. Q. Liu, M. R. Gao, Y. Liu, J. S. Okasinski, Y. Ren, and Y. Sun, Nano Lett., 2016, 16, 715-720.
40. T. H Yang, H. C. Peng, S. Zhou, C. T. Lee, S. Bao, Y. H. Lee, J. M. Wu, and Y. Xia, Nano Lett., 2017, 17, 334-340.
41. S. Ozkar, and R. G. Finke, Langmuir, 2016, 32, 3699-3716.
42. M. A. Watzky and R. G. Finke, J. Am. Chem. Soc., 1997, 119, 10382-10400.
43. L. I. Elding and L. F. Olsson, J. Phys. Chem. A, 1978, 82, 69-74.
44. R.J. Kriek, and F. Mahlamvana, Appl. Catal. A, 2012, 423-424, 28-33.
45. C. J. le Roux, and R.J. Kriek, Hydrometallurgy, 2017, 169, 447-455.
Chapter 2
1. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; EI-Sayed, M. A. Science 1996, 272, 1924-1926.
2. Sun, Y.; Xia, Y. Science 2002, 298, 2176-2179.
3. Chiu, C. Y.; Li, Y.; Ruan, L.; Ye, X.; Murray, C. B.; Huang, Y. Nat. Chem. 2011, 3, 393-399.
4. Ye, X.; Chen, J.; Engel, M.; Millan, J. A.; Li, W.; Qi, L.; Xing, G.; Collins, J. E.; Kagan, C. R.; Li, J.; Glotzer, S. C.; Murray, C. B. Nat. Chem. 2013, 5, 466-473.
5. Yamada, Y.; Tsung, C. K.; Huang, W.; Huo, Z.; Eabas, S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P. Nat. Chem. 2011, 3, 372-376.
6. Wang, X.; Choi, S.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron, J. A.; Mavrikakis, M.; Xia, Y. Nat. Comm. 2015, 6, 7594.
7. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.; Park, J.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y. Science 2015, 349, 412-416.
8. Choi, J. H.; Wang, H.; Oh, S. J.; Paik, T.; Jo, P. S.; Sung.; J.; Ye, X.; Zhao, T.; Diroll, B. T.; Murray, B. T.; Kagan, C. Science 2016, 352, 205-208.
9. Henzie, J.; Andrews, S. C.; Ling, X. Y.; Li, Z.; Yang, P. Proc. Natl. Acad. Sci. 2013, 110, 6640-6645.
10. Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nat. Mater. 2011, 10, 631-636.
11. Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G.; Wang, L. V.; Xia, Y. Nat. Mater. 2009, 8, 935-939.
12. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60-103.
13. Xia, Y.; Xia, X.; Peng, H. C. J. Am. Chem. Soc. 2015, 137, 7947-7966.
14. Buck, M. R.; Bondi, J. F.; Schaak, R. E. Nat. Chem. 2012, 4, 37-44.
15. Auyeung, E.; Li , T. N. G.; Senesi, A. J.; Schmucker, A. L.; Pals, B. C.; Cruz, M. O. D. L.; Mirkin, C. A. Nature 2014, 505, 73-77.
16. Wu, X. J.; Chen, J.; Tan, C.; Zhu, Y.; Han, Y.; Zhang, H. Nat. Chem. 2016, 8, 470-475.
17. Lamer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847-4854.
18. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Chem. Rev. 2014, 114, 7610-7630.
19. Cacciuto, A.; Frenkel, D. Science 2004, 428, 404-406.
20. Yao, T.; Liu, S.; Sun, Z.; Li, Y.; He, S.; Cheng, H.; Xie, Y.; Liu, Q.; Jiang, Y.; Wu, Z.; Pan, Z.; Yan, Y.; Wei, S. J. Am. Chem. Soc. 2012, 134, 9410-9416.
21. Liao, H. G.; Zherebetskyy, D.; Xin, H.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. Science 2014, 345, 916-919.
22. Peng, Y.; Wang, F.; Wang, Z.; Alsayed, A. M.; Zhang, Z.; Yodh, A. G.; Han, Y. Nat. Mater. 2015, 14, 101-108.
23. Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382-10400.
24. Watzky, M. A.; Finney, E. E.; Finke, R. G. J. Am. Chem. Soc. 2008, 130, 11959-11969.
25. Liu, Q.; Gao, M. R.; Liu, Y.; Okasinski, J. S.; Ren, Y.; Sun, Y. Nano Lett. 2016, 16, 715-720.
26. Berg, R. V. D.; Elkjaer, C. F.; Gommes, C. J.; Chorkendorff, I.; Sehested, J.; Jongh, P. E. D.; Jong, K. P. D.; Helveg, S. J. Am. Chem. Soc. 2016, 138, 3433-3442.
27. Timoshkin, A. Y.; Kudrev, A. G. Russ. J. Org. Chem. 2012, 57, 1362-1370.
28. Zhan, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H. C.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078-6089.
29. Peng, H. C.; Park, J.; Zhang, L.; Xia, Y. J. Am. Chem. Soc. 2015, 137, 6643-6652.
30. Jin, M.; Liu, H.; Zhang, H.; Xie, Z.; Liu, J.; Xia, Y. Nano Res. 2011, 4, 83-91.
31. Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Dalton Trans. 2015, 44, 17883-17905.
32. Peng, H. C.; Xie, S.; Park, J.; Xia, X.; Xia, Y. J. Am. Chem. Soc. 2013, 135, 3780-3783.
33. Xia, X.; Xie, S.; Liu, M.; Peng, H. C.; Lu, N.; Wang, J.; Kim, M. J.; Xia, Y. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 6669-6673.
Chapter 3
1. Mata-Perez F, Perez-Benitol J (1987) The kinetic rate law for autocatalytic reactions. J Chem Educ 64 (11): 925-927.
2. Lavabre D, Pimienta V, Levy G, Micbea JC (1993) Reversible, mixed first- and second-order and autocatalytic reactions as particular cases of a single kinetic rate law. J Phys Chem 97(20): 5321-5326.
3. Pasternack RF, et al. (1998) A nonconventional approach to supramolecular formationdynamics. the kinetics of assembly of dna-bound porphyrins. J Am Chem Soc 120(24): 5873-5878.
4. Watzky F, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. a new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119(43): 10382-10400.
5. Harada M, Kizaki S (2016) Formation mechanism of gold nanoparticles synthesized by photoreduction in aqueous ethanol solutions of polymers using in situ quick scanning x-ray absorption fine structure and small-angle x-ray scattering. Cryst Growth Des 16(3): 1200-1212.
6. Widegren JA, Bennett MA, Finke RG (2003) Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(ƞ6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation. J Am Chem Soc 125(34): 10301-10310.
7. Liu Q, et al. (2016) Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy x‑ray scattering. Nano Lett 16(1): 715-720.
8. Besson G, Finney EE, Finke RG (2005) Nanocluster nucleation, growth, and then agglomeration kinetic and mechanistic studies: a more general, four-step mechanism involving double autocatalysis. Chem Mater 17(20): 4925-4938.
9. Yang TH, et al. (2017) Toward a quantitative understanding of the reduction pathways of a salt precursor in the synthesis of metal nanocrystals. Nano Lett 17(1): 334-340.
10. Mondloch JE, Yan X, Finke RG (2009) Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2. J Am Chem Soc 131(18): 6389-6396.
11. Berg RVD, et al. (2016) Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. J Am Chem Soc 138(10): 3433-3442.
12. Kent P, Mondloch JE, Finke RG (2016) Synthesis of Heterogeneous Ir0∼600-900/γ-Al2O3 in one pot from the precatalyst Ir(1,5-COD)Cl/γ-Al2O3: discovery of two competing trace “ethyl acetate effects” on the nucleation step and resultant product. ACS Catal 6(8): 5449-5461.
13. Thurmer K, Williams E, Reutt-Robey J (2002) Autocatalytic oxidation of lead crystallite surfaces. Science 297(5589): 2033-2035.
14. Over H, Seitsonen AP (2002) Oxidation of metal surfaces. Science 297(5589): 2003-2005.
15. Clemens JB, Bishop SR, Feldwinn DL, Droopad R, Kummel AC (2009) Initial stages of the autocatalytic oxidation of the InAs(0 0 1)-(4 x 2)/c(8 x 2) surface by molecular oxygen. Surf Sci 603(14): 2230-2239.
16. Xia Y, Xia X, Peng HC (2015) Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J Am Chem Soc 137(25): 7947-7966.
17. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew Chem Int Ed 48(1): 60-103.
18. Xia Y, Gilroy KD, Peng HC, Xia X (2017) Seed-mediated growth of colloidal metal nanocrystals. Angew Chem Int Ed 56(1): 60-95.
19. Elding LI, Olsson LF (1978) Electronic absorption spectra of square-planar chloro-aqua and bromo-aqua complexes of palladium(II) and platinum(II). J Phys Chem 82(1): 69-74.
20. Roux CJL, Kriek RJ (2017) A detailed spectrophotometric investigation of the complexation of palladium(II) with chloride and bromide. Hydrometallurgy 169: 447-455.
21. Peng HC, Xie S, Park J, Xia X, Xia Y (2013) Quantitative analysis of the coverage density of Br− ions on Pd{100}facets and its role in controlling the shape of Pd nanocrystals. J Am Chem Soc 135(10): 3780-3783.
22. Jin M, Zhang H, Xie Z, Xia Y (2012) Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ Sci 5(4):6352-6357.
23. Wang Y, et al. (2013) Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 7(5):4586-4594.
24. Zhang Z, et al. (2015) Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem Sci 6(9):5197-5203.
25. HArdeveld RV, Hartog F (1969) The statistics of surface atoms and surface sites on metal crystals. Surf Sci 15(2):189-230.
26. Crespo-Quesada M, Yarulin A, Jin M, Xia Y, Kiwi-Minsker L (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective? J Am Chem Soc 133(32): 12787-12794.
27. Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11(9): 3714-3719.
28. Deng L, Deng H, Xiao S, Tang J, Hu W (2013) Morphology, dimension, and composition dependence of thermodynamically preferred atomic arrangements in Ag-Pt nanoalloys. Faraday Discuss 162: 293-306.
29. Xia X, et al. (2013) On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc Natl Acad Sci USA 110(17): 6669-6673.
30. Gilroy KD, et al. (2017) Thermal stability of metal nanocrystals: an investigation of the surface and bulk reconstructions of Pd concave icosahedra. Nano Lett 17(6): 3655-3661.
31. Wu J, et al. (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134(29): 11880-11883.
32. Wang L, et al. (2015) Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett 15(5): 2875-2880.
33. Peng HC, Park J, Zhang L, Xia Y (2015) Toward a quantitative understanding of symmetry reduction involved in the seed-mediated growth of Pd nanocrystals. J Am Chem Soc 137(20): 6643-6652.
34. Jin M, et al. (2011) Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res 4(1): 83-91.
35. Jin M, Zhang H, Xie Z, Xia Y (2012) Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ Sci 5(4):6352-6357.
36. Huang H, et al. (2014) Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 8(7): 7041-7050.
37. Wang X, et al. (2015) Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat Commun 6: 7594.
Chapter 4
1. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025–1102.
2. Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547–1562.
3. Xia, Y.; Xiong, Y.; Lim, D.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60–103.
4. Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; Liz-Marzán, L. M. Nano Today 2009, 4, 244–251.
5. An, K.; Somorjai, G. A. ChemCatChem 2012, 4, 1512–1524.
6. Wang, C.; Hu, Y.; Lieber, C. M.; Sun, S. J. Am. Chem. Soc. 2008, 130, 8902–8903.
7. Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nat. Mater. 2010, 9, 193–204.
8. Tao, A. R.; Habas, S.; Yang, P. Small 2008, 4, 310–325.
9. Gilroy, K. D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y. Chem. Rev. 2016, 116, 10414–10472.
10. Quan, Z.; Wang, Y.; Fang, J. Acc. Chem. Res. 2013, 46, 191–202.
11. Zhang, H.; Jin, M.; Xia, Y. Angew. Chem. Int. Ed. 2012, 51, 7656–7673.
12. Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 7850 –7854.
13. Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G. J. Am. Chem. Soc. 2010, 132, 7580–7581.
14. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li. T. J. Phys. Chem. B 2005, 109, 13857–13870.
15. Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S.; Mirkin, C. A. J. Am. Chem. Soc. 2010, 132, 14012–14014.
16. Marks, L. D.; Peng, L. J. Phys.: Condens. Matter 2016, 28, 053001.
17. Chen, M. S.; Cai, Y.; Yan, Z.; Gath, K.; Axnanda, S.; Goodman, D. W. Surf. Sci. 2007, 601, 5326–5331.
18. Zaera, F. Catal. Today 2003, 81, 149–157.
19. Huber, G. W.; Corma, A. Angew. Chem. Int. Ed. 2007, 46, 7184–7201.
20. Ciuparu, D.; Lyubovsky, M. R.; Altman, E.; Pfefferle, L. D.; Datye, A. Catal. Rev. 2002, 44, 593–649.
21. Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G. A. Nat. Mater. 2009, 8, 126–131.
22. Young, N. P.; van Huis, M. A.; Zandbergen, H. W.; Xu, H.; Kirkland, A. I. Ultramicroscopy 2010, 110, 506–516.
23. Barnard, A. S.; Young, N. P.; Kirkland, A. I.; van Huis, M. A.; Xu, H. ACS Nano 2009, 3, 1431–1436.
24. Wu, J. B.; Gao, W. P.; Wen, J. G.; Miller, D.; Lu, P.; Zuo, J. M.; Yang, H. Nano Lett. 2015, 15, 2711–2715.
25. Lu, N.; Wang, J.; Xie, S.; Xia, Y.; Kim, M. J. Chem. Comm. 2013, 49, 11806–11808.
26. Chen, H.; Yu, Y.; Xin, H. L.; Newton, K. A.; Holtz, M. E.; Wang, D.; Muller, D. A.; Abruña, H. D.; DiSalvo, F. J. Chem. Mater. 2013, 25, 1436–1442.
27. Bonifacio, C. S.; Carenco, S.; Wu, C. H.; House, S. D.; Bluhm, H.; Yang, J. C. Chem. Mater. 2015, 27, 6960–6968.
28. Asoro, M. A.; Kovar, D.; Shao-Horn, Y.; Allard, L. F.; Ferreira, P. J. Nanotechnology 2010, 21, 025701.
29. Xu, Y.; Zhang, B. Chem. Soc. Rev. 2014, 43, 2439–2450.
30. Wang, X.; Ruditskiy, A.; Xia, Y. Natl. Sci. Rev. 2016, 3, 520–533.
31. Baletto, F.; Ferrando, R. Rev. Mod. Phys. 2005, 77, 371–423.
32. Xia, X.; Xie, S.; Liu, M.; Peng, H.-C.; Lu, N.; Wang, J.; Kim, M. J.; Xia, Y. Proc. Natl. Acad. Sci. USA 2013, 110, 6669–6673.
33. Kibey, S.; Liu, J. B.; Johnson, D. D.; Sehitoglu, H. Acta Materialia 2007, 55, 6843–6851.
34. Wang, R.; Zhang, H.; Farle, M.; Kisielowski, C. Nanoscale 2009, 1, 276–279.
35. Wang, X.; Choi, S.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron, J. A.; Mavrikakis, M., Xia, Y. Nat Commun. 2015, 6, 7594.
Chapter 5
1. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M. H. Whangbo, Angew. Chem. Int. Ed. 47 (2008) 7931-7933.
2. H. A. Atwater, A. Polman, Nat. Mater. 9 (2011) 205-213.
3. P. Christopher, H. Xin, S. Linic, Nat. Chem. 3 (2011) 467-472.
4. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Adv. Mater. 24 (2012) 3046-3052.
5. W. Zhao, Y. Guo, S. Wang, H. He, C. Sun, S. Yang, Appl. Catal. B: Environ. 165 (2015) 335-343.
6. W. Li, C. Feng, S. Dai, J. Yue, F. Hua, H. Hou, Appl. Catal. B: Environ. 168-169 (2015) 465-471.
7. H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Appl. Catal. B: Environ. 170-171 (2015) 206-214.
8. S. Bouhadoun, C. Guillard, F. Dapozze, S.Singh, D. Amans, J. Bouclé, N. Herlin-Boime, Appl. Catal. B: Environ. 174-175 (2015) 367-375.
9. S. C. Warren, E. Thimsen, Energy Environ. Sci. 5 (2012) 5133-5146.
10. W. Hou, S. B. Cronin, Adv. Funct. Mater. 23 (2013) 1612-1619.
11. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130 (2008) 1676-1680.
12. S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D. Bristow, N. Wu, J. Am. Chem. Soc. 134 (2012) 15033-15041.
13. K. Jung, H. J. Song, G. Lee, Y. Ko, K. Ahn, H. Choi, J. Y. Kim, K. Ha, J. Song, J. K. Lee, C. Lee, M. Choi, ACS Nano 8 (2014) 2590-2601.
14. D. B. Ingram, S. Linic, J. Am. Chem. Soc. 133 (2011) 5202-5205.
15. J. Li, S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow, N. Wu, ACS Catal. 3 (2013) 47-51.
16. Y. Tang, Z. Jiang, G. Xing, A. Li, P. D. Kanhere, Y. Zhang, T. C. Sum, S. Li, X. Chen, Z. Dong, Z. Chen, Adv. Funct. Mater. 23 (2013) 2932-2940.
17. H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L. C. Cheng, H. W. Huang, T. S. Chan, D. W. Huang, R. S. Liu, D. P. Tsai, Small 9 (2013) 2926-2936.
18. Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, M. Y. Han, Adv. Mater. 24 (2012) 2310-2314.
19. Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu, Y. Li, Nano Lett. 13 (2013) 3817-3823.
20. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, N. J. Halas, Nano Lett. 13 (2013) 240-247.
21. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S. B. Cronin, Nano Lett. 11 (2011) 1111-1116.
22. H. Gao, C. Liu, H. E. Jeong, P. Yang, ACS Nano 6 (2012) 234-240.
23. G. A. Sotiriou, F. S, A. Dasargyri, M. C. Wurnig, F. Krumeich, A. Boss, J. C. Leroux, S. E. Pratsinis, Adv. Funct. Mater. 24 (2014) 2818-2827.
24. X. Wang, K. Q. Peng, Y. Hu, F. Q. Zhang, B. Hu, L. Li, M. Wang, X. M. Meng, S. T. Lee, Nano Lett. 14 (2014) 18-23.
25. J. Li, S. K. Cushing, P. Zheng, F. Meng, D. Chu, N. Wu, Nat. Comm. 4 (2013) 1-8.
26. Y. K. Lin, H. W. Ting, C. Y. Wang, S. Gwo, L. J. Chou, C. J. Tsai, L. J. Chen, Nano Lett. 13 (2013) 2723-2731.
27. S. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, N. J. Halas, J. Am. Chem. Soc. 136 (2014) 64-67.
28. J. Qui, G. Zeng, P. Pavaskar, Z. Li, S. B. Cronin, Phys. Chem. Chem. Phys. 16 (2014) 3115-3121.
29. H. M. Chen, C. K. Chen, C. J. Chen, L. C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, D. P. Tsai, ACS Nano 6 (2012) 7362-7372.
30. Y. Qu, R. Cheng, Q. Su, X. Duan, J. Am. Chem. Soc. 133 (2011) 16730-16733.
31. Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 48 (2009) 60-103.
32. X. Xia, Y. Wang, A. Ruditskiy, Y. Xia, Adv. Mater. 25 (2013) 6313-6133.
33. K. H. Su, Q. H. Wei, X. Zhang Nano Lett. 3 (2003) 1087-1090.
34. H. Wang, T. You, W. Shi, J. Li, L. Guo, J. Phys. Chem. C 116 (2012) 6490-6494.
35. H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, C. Zhu, Adv. Funct. Mater. 22 (2012) 218-224.
36. T. Kawawaki, Y. Takahashi, T. Tatsuma, J. Phys. Chem. C 117 (2013) 5901-5907.
37. S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 10 (2011) 911-921.
38. B. F. Mangelson, M. R. Jones, D. J. Park, C. M. Shade, G. C. Schatz, C. A. Mirkin, Chem. Mater. 26 (2014) 3818-3824.
39. J. J. Wu, C. H. TsengAppl. Catal. B: Environ. 66 (2006) 51-57.
40. P. Thiyagarajan, H. J. Ahn, J. S. Lee, J. C. Yoon, J. H. Jang, Small, 9 (2013) 2341-2347.
41. Q. Lu, Z. Lu, Y. Lu, L. Lv, Y. Ning, H. Yu, Y. Hou, Y. Yin, Nano Lett. 13 (2013) 5698-5702.
42. S. Sundararajan, N. K. Grady, N. Mirin, N. J. Halas, Nano Lett. 8 (2008) 624-630.
43. C. K. N. Peh, L. KE, G.W. Ho, Mater. Lett. 64 (2010) 1372-1375.
44. S. Y. Lin, Y. T. Tsai, C. C. Chen, C. M. Lin, C. H. Chen, J. Phys. Chem. B 108 (2004) 2134-2139.
45. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, Chem. Eur. J. 8 (2002) 28-35.
46. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Nano Lett. 7 (2007) 1793-1798.
47. Tanaka, A. Ogino, M. Iwaki, K. Hashimoto, A. Ohnuma, F. Amano, B. Ohtani, H. Kominami, Langmuir 28 (2012) 13105-13111.
48. A. Ismail, D. W. Bahnemann, I. Bannat, M. Wark, J. Phys. Chem. C 113 (2009) 7429-7435.
49. C. Lin, Y. C. Yeh, C. Y. Yang, C. L. Chen, G. F. Chen, C. C. Chen, Y. C. Wu, J. Am. Chem. Soc. 124 (2002) 3508-3509.
50. R. K. Gupta, D. Y. Kusuma, P. S. Lee, M. P. Srinivasan, ACS Appl. Mater. Interfaces 3 (2011) 4619-4625.
51. X. Yan, C. Zou, X. Gao, W. Gao, J. Mater. Chem. 22 (2012) 5629-5640.
52. Y. Kao, C. L. Hsin, C. W. Huang, S. Y. Yu, C. W. Wang, P. H. Yehb, W. W. Wu, Nanoscale 4 (2012) 1476-1480.
53. Zhang, M. Shao , F. Ning, S. Xu, Z. Li, M. Wei, D. G. Evans, X. Duan., Nano Energy 12 (2015) 231-239.
54. Ha, L. Y. S. Lee, J. Wang, F. Li, K. Y. Wong, S. C. E. Tsang, Adv. Mater. 26 (2014) 3496-3500.
55. L. Sun, D. Zhao, Z. Song, C. Shan, Z. Zhang, B. Li, D. Shen, Colloid. Interface Sci. 363 (2011) 175-181.
56. M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss, Nat. Chem. 3 (2011) 489-490.
57. J. W. Chiou, S. C. Ray, H. M. Tsai, C. W. Pao, F. Z. Chien, W. F. Pong, H. Tseng, J. J. Wu, M. H. Tsai, H. Chen, H. J. Lin, J. F. Lee, J. H. Guo, J. Phys. Chem. C 115 (2011) 2650-2655.
58. J. R. Adleman, D. A. Boyd, D. G. Goodwin, D. Psaltis, Nano Lett. 9 (2009) 4417-4423.
59. D. G. Moon, J. H. Yun, J. Gwak, S. K. Ahn, A. Cho, K. Shin, K. Yoon, S. Ahn, Energy Environ. Sci. 5 (2012) 9914-9921.
60. R. Huang, H. C. Ding, W. I. Liang, Y. C. Gao, X. D. Tang, Q. He, C. G. Duan, Z. Zhu, J. Chu, C. A. J. Fisher, T. Hirayama, Y. Ikuhara, Y. H. Chu, Adv. Funct. Mater. 24 (2014) 793-799.
61. J. Plante, A. Teitelboim, I. Pinkas, D. Oron, T. Mokari, J. Phys. Chem. Lett. 5 (2014) 590-596.
62. X. An, X. Yu, J. C. Yu G. Zhang, J. Mater. Chem. A 1 (2013) 5158-5164.
63. T. H. Yang, J. M. Wu, Acta Mater. 60 (2012) 3310-3320.
64. S. Y. Lin, Y. T. Tsai, C. C. Chen, C. M. Lin, C. H. Chen, J. Phys. Chem. B 108 (2004) 2134-2139.
65. A. Pearson, H. Jani, K. Kalantar-zadeh, S. K. Bhargava, V. Bansal, Langmuir, 27 (2011) 6661-6667.
66. C. Yu, G. Li, S. Kumar, K. Yang, R. Jin, Adv. Mater. 26 (2014) 892-898.
67. M. Lee, P. Amaratunga, J. Kim, D. Lee, J. Phys. Chem. C 114 (2010) 18366-18371.
Chapter 6
1. S. Chen, Q. Yang, H. Wang, S. Zhang, J. Li, Y. Wang, W. Chu, Q. Ye, and L. Song, Nano Lett., 2015, 15, 5961-5968.
2. S. Xie, S. I. Choi, N. Lu, L. T. Roling, J. A. Herron, L. Zhang, J. Park, J. Wang, M. J. Kim, Z. Xie, M. Mavrikakis, and Y. Xia, Nano Lett., 2014, 14, 3570-3576.
3. F. Mahlamvana, R.J. Kriek, Appl. Catal. B, 2014, 148-149, 387-393.
4. L. I. Elding and L. F. Olsson, J. Phys. Chem. A, 1978, 82, 69-74.
5. R.J. Kriek, and F. Mahlamvana, Appl. Catal. A, 2012, 423-424, 28-33.
6. C. J. le Roux, and R.J. Kriek, Hydrometallurgy, 2017, 169, 447-455.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *