帳號:guest(18.222.57.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱冠璋
作者(外文):Chiu, Kuan-Chang
論文名稱(中文):低維度二硫化鉬與奈米碳管之合成、鑑定及應用
論文名稱(外文):Synthesis, Characterization and Applications of Low-dimensional Molybdenum Disulfide and Carbon Nanotube
指導教授(中文):吳振名
李奕賢
指導教授(外文):Wu, Jenn-Ming
Lee, Yi-Hsien
口試委員(中文):果尚志
楊智超
陳永富
張嘉升
口試委員(外文):Gwo, Shangjr
Yang, Chih-Chao
Chen, Yung-Fu
Chang, Chia-Seng
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:100031807
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:183
中文關鍵詞:二硫化鉬奈米碳管場效電晶體電漿共振場發射異質結構三維晶片
外文關鍵詞:MoS2carbon nanotubefield-effect transistorplasmon resonancefield emissionheterostructurethree-dimensional integrated circuit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:92
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
此論文中,研究對於元件尺寸微縮有潛力的低維度半導體材料-二維二硫化鉬與一維奈米碳管,包含合成方法、優異的電學與光學特性及未來奈米電子元件之前瞻應用。利用化學氣相沉積法完成大面積均勻並高結晶品質之二硫化鉬單分子層製備,並展示藉由缺陷控制、相轉變、異質結構及結構形貌的調變達到能帶結構、電流傳導特性、光學特性及磁特性的可調性,提供多功能性元件應用與新穎物理研究;另外,展示大面積規則排列奈米碳管薄膜組裝方法,並能有效控制薄膜厚度,擁有高度異向性之光-物質交互作用包含相干性電漿子共振、電漿子-聲子耦合以及增強型吸收且涵蓋遠紅外光/太赫茲頻率至近紅外光(波長約1.4微米)寬頻段之可調性,展現奈米碳管電漿子在紅外光感測器有很大潛力;此外,高良率之n型與p型場效電晶體及互補式金屬氧化物半導體元件能藉由金屬電極的選擇與通道的摻雜達成,展示其在電子元件應用的潛力。此論文中這些優異特性展望了此兩低維度半導體材料在下世代電子元件應用的潛力與重要性。
In this dissertation, two potential low-dimensional semiconducting materials, two-dimensional molybdenum disulfide (MoS¬2) and one-dimensional carbon nanotube (CNT), with several benefits for device miniaturization were investigated including reliable synthesis, remarkable electrical properties, fascinating optical physics and prospective applications for future nano-electronic devices. Large-area MoS2 monolayers with uniformity and high crystalline quality achieved by chemical vapor deposition were demonstrated for future industry demand. The tunability on band structures, electrical transports, optical properties or magnetic properties with defect control, phase engineering, heterostructures or geometry modulation provides diverse functionalities for device applications and novel physics exploration. Robust methods for large-area universally-aligned CNT films with controllable thickness were also demonstrated. The fascinating light-matter interactions related to the highly anisotropism such as coherent plasmon resonance, plasmon-phonon coupling as well as enhanced and broadly tunable absorption spanning wavelengths from the terahertz/far-infrared to the near-infrared (down to telecom wavelength 1.4 μm) were presented, making CNT plasmonics a promising foundation for photodetection applications through the entire infrared range. Besides, both reliable p-type field-effect transistors (FETs) and n-type FETs as well as complementary metal-oxide-semiconductor (CMOS) inverters were also fabricated with the proper engineer of contact metal and channel doping for a demonstration of the potential for electronics applications. These prominent performances presented in this dissertation envision the potential and significance of these two low-dimensional semiconducting materials for next-generation electronics.
ABSTRACT I
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SYNTHESIS AND APPLICATIONS OF TWO-DIMENSIONAL MONOLAYER SEMICONDUCTORS 5
2.1 Growth of Monolayer semiconductors by Chemical Vapor Deposition 6
2.2 Manipulation of Electrical and Magnetic properties by Defect Control 35
2.3 Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3DIC 50
CHAPTER 3 SYNTHESIS AND APPLICATIONS OF ONE-DIMENSIONAL CARBON NANOTUBES 57
3.1 Preparation of Universally-aligned Carbon Nanotubes 57
3.2 Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes 61
3.3 Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes 77
3.4 Contact Engineering and Channel Doping for Robust Carbon Nanotube NFETs 92
CHAPTER 4 INTEGRATION AND APPLICATION OF HETEROGENEOUS MATERIALS 104
4.1 2D-2D In-plane Artificial Lattices of Monolayers Heterojunctions 105
4.2 Electron Field Emission of Geometrically-Modulated 2D Monolayers on 1D ZnO arrays 129
4.3 Integration of 2D-MoS2 and 1D-CNT 161
CHAPTER 5 CONCLUSION 163
REFERENCE 165

1. I. Ferain, C. A. Colinge, J. P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479, 310-316 (2011).
2. K. Banerjee, S. J. Souri, P. Kapur, K. C. Saraswat, 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. P Ieee 89, 602-633 (2001).
3. A. W. Topol et al., Three-dimensional integrated circuits. Ibm J Res Dev 50, 491-506 (2006).
4. G. D. Wilk, R. M. Wallace, J. M. Anthony, High-kappa gate dielectrics: Current status and materials properties considerations. J Appl Phys 89, 5243-5275 (2001).
5. J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys 69, 327-396 (2006).
6. K. Mistry et al., A 45nm logic technology with high-k plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. 2007 Ieee International Electron Devices Meeting, Vols 1 and 2, 247-+ (2007).
7. G. Fiori et al., Electronics based on two-dimensional materials. Nat Nanotechnol 9, 768-779 (2014).
8. Y. Yoon, K. Ganapathi, S. Salahuddin, How Good Can Monolayer MoS2 Transistors Be? Nano Lett 11, 3768-3773 (2011).
9. S. B. Desai et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99-102 (2016).
10. L. T. Liu, Y. Lu, J. Guo, On Monolayer MoS2 Field-Effect Transistors at the Scaling Limit. Ieee T Electron Dev 60, 4133-4139 (2013).
11. Q. Cao, J. Tersoff, D. B. Farmer, Y. Zhu, S. J. Han, Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369-1372 (2017).
12. A. D. Franklin et al., Sub-10 nm Carbon Nanotube Transistor. Nano Lett 12, 758-762 (2012).
13. A. D. Franklin et al., Carbon Nanotube Complementary Wrap-Gate Transistors. Nano Lett 13, 2490-2495 (2013).
14. J. Appenzeller, Carbon nanotubes for high-performance electronics - Progress and prospect. P Ieee 96, 201-211 (2008).
15. Q. Cao et al., End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68-72 (2015).
16. A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. Nature 499, 419-425 (2013).
17. A. K. Geim, K. S. Novoselov, The rise of graphene. Nat Mater 6, 183-191 (2007).
18. K. S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
19. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene. Rev Mod Phys 81, 109-162 (2009).
20. A. S. Mayorov et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett 11, 2396-2399 (2011).
21. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 76, (2007).
22. C. R. Dean et al., Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5, 722-726 (2010).
23. M. Chhowalla et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5, 263-275 (2013).
24. C. Lee et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. Acs Nano 4, 2695-2700 (2010).
25. K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys Rev Lett 105, (2010).
26. A. Splendiani et al., Emerging Photoluminescence in Monolayer MoS2. Nano Lett 10, 1271-1275 (2010).
27. S. Bertolazzi, J. Brivio, A. Kis, Stretching and Breaking of Ultrathin MoS2. Acs Nano 5, 9703-9709 (2011).
28. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat Nanotechnol 6, 147-150 (2011).
29. H. Wang et al., Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Lett 12, 4674-4680 (2012).
30. K. S. Novoselov et al., Two-dimensional atomic crystals. P Natl Acad Sci USA 102, 10451-10453 (2005).
31. P. Joensen, R. F. Frindt, S. R. Morrison, Single-Layer Mos2. Mater Res Bull 21, 457-461 (1986).
32. G. Eda et al., Photoluminescence from Chemically Exfoliated MoS2. Nano Lett 11, 5111-5116 (2011).
33. R. A. Gordon, D. Yang, E. D. Crozier, D. T. Jiang, R. F. Frindt, Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys Rev B 65, (2002).
34. Z. Y. Zeng et al., Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angew Chem Int Edit 50, 11093-11097 (2011).
35. J. N. Coleman et al., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 331, 568-571 (2011).
36. R. J. Smith et al., Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials 23, 3944-+ (2011).
37. K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, H. L. Zhang, A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angew Chem Int Edit 50, 10839-10842 (2011).
38. A. O'Neill, U. Khan, J. N. Coleman, Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size. Chem Mater 24, 2414-2421 (2012).
39. A. Castellanos-Gomez et al., Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor. Nano Lett 12, 3187-3192 (2012).
40. X. Lu, M. I. B. Utama, J. Zhang, Y. Y. Zhao, Q. H. Xiong, Layer-by-layer thinning of MoS2 by thermal annealing. Nanoscale 5, 8904-8908 (2013).
41. Y. L. Liu et al., Layer-by-Layer Thinning of MoS2 by Plasma. Acs Nano 7, 4202-4209 (2013).
42. J. L. Brito, M. Ilija, P. Hernandez, Thermal and Reductive Decomposition of Ammonium Thiomolybdates. Thermochim Acta 256, 325-338 (1995).
43. T. Weber, J. C. Muijsers, H. J. M. C. vanWolput, C. P. J. Verhagen, J. W. Niemantsverdriet, Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2 as studied by X-ray photoelectron and infrared emission spectroscopy. J Phys Chem-Us 100, 14144-14150 (1996).
44. T. P. Prasad, E. Diemann, A. Muller, Thermal-Decomposition of (Nh4)2moo2s2, (Nh4)2mos4, (Nh4)2wo2s2 and (Nh4)2ws4. J Inorg Nucl Chem 35, 1895-1904 (1973).
45. H. W. Wang, P. Skeldon, G. E. Thompson, G. C. Wood, Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate. J Mater Sci 32, 497-502 (1997).
46. Y. Yan et al., Ultrathin MoS2 Nanoplates with Rich Active Sites as Highly Efficient Catalyst for Hydrogen Evolution. Acs Appl Mater Inter 5, 12794-12798 (2013).
47. C. N. R. Rao, M. Nath, Inorganic nanotubes. Dalton T, 1-24 (2003).
48. R. Tenne, Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew Chem Int Edit 42, 5124-5132 (2003).
49. K. K. Liu et al., Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett 12, 1538-1544 (2012).
50. Y.-H. Lee et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials 24, 2320-2325 (2012).
51. Y. H. Lee et al., Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. Rsc Adv 2, 111-115 (2012).
52. A. Reina et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 9, 30-35 (2009).
53. S. M. Kim et al., Synthesis of Patched or Stacked Graphene and hBN Flakes: A Route to Hybrid Structure Discovery. Nano Lett 13, 933-941 (2013).
54. S. Najmaei et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12, 754-759 (2013).
55. A. M. van der Zande et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12, 554-561 (2013).
56. Y. C. Lin et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637-6641 (2012).
57. Y. F. Yu et al., Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Sci Rep-Uk 3, (2013).
58. Y. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, J. Lou, Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small 8, 966-971 (2012).
59. X. Ling et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Lett 14, 464-472 (2014).
60. Q. Q. Ji et al., Epitaxial Monolayer MoS2 on Mica with Novel Photoluminescence. Nano Lett 13, 3870-3877 (2013).
61. Y. Zhang et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. Acs Nano 7, 8963-8971 (2013).
62. J. C. Shaw et al., Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res 7, 511-517 (2014).
63. X. L. Wang et al., Chemical Vapor Deposition Growth of Crystalline Mono layer MoSe2. Acs Nano 8, 5125-5131 (2014).
64. J. K. Huang et al., Large-Area Synthesis of Highly Crystalline WSe2 Mono layers and Device Applications. Acs Nano 8, 923-930 (2014).
65. D. S. Kong et al., Few-Layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential. Nano Lett 10, 2245-2250 (2010).
66. D. S. Kong et al., Topological Insulator Nanowires and Nanoribbons. Nano Lett 10, 329-333 (2010).
67. S. F. Wu et al., Vapor-Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. Acs Nano 7, 2768-2772 (2013).
68. K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009).
69. X. S. Li et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312-1314 (2009).
70. L. Song et al., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett 10, 3209-3215 (2010).
71. Y. M. Shi et al., Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Lett 10, 4134-4139 (2010).
72. X. S. Wang, H. B. Feng, Y. M. Wu, L. Y. Jiao, Controlled Synthesis of Highly Crystalline MoS2 Flakes by Chemical Vapor Deposition. J Am Chem Soc 135, 5304-5307 (2013).
73. Y. M. Shi et al., van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates. Nano Lett 12, 2784-2791 (2012).
74. Y. H. Lee et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Lett 13, 1852-1857 (2013).
75. G. H. Han et al., Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat Commun 6, (2015).
76. T. W. Scharf et al., Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater 54, 4731-4743 (2006).
77. T. W. Scharf, S. V. Prasad, T. M. Mayer, R. S. Goeke, M. T. Dugger, Atomic layer deposition of tungsten disulphide solid lubricant thin films. J Mater Res 19, 3443-3446 (2004).
78. S. Shin, Z. Jin, D. H. Kwon, R. Bose, Y. S. Min, High Turnover Frequency of Hydrogen Evolution Reaction on Amorphous MoS2 Thin Film Directly Grown by Atomic Layer Deposition. Langmuir 31, 1196-1202 (2015).
79. Z. Jin, S. Shin, D. H. Kwon, S. J. Han, Y. S. Min, Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale 6, 14453-14458 (2014).
80. L. K. Tan et al., Atomic layer deposition of a MoS2 film. Nanoscale 6, 14002-14002 (2014).
81. N. Zink et al., In situ heating TEM study of onion-like WS2 and MoS2 nanostructures obtained via MOCVD. Chem Mater 20, 65-71 (2008).
82. K. Kang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656-660 (2015).
83. W. K. Hofmann, Thin-Films of Molybdenum and Tungsten Disulfides by Metal Organic-Chemical Vapor-Deposition. J Mater Sci 23, 3981-3986 (1988).
84. S. M. Eichfeld et al., Highly Scalable, Atomically Thin WSe2 Grown via Metal-Organic Chemical Vapor Deposition. Acs Nano 9, 2080-2087 (2015).
85. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3, 20-30 (2011).
86. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712 (2012).
87. D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem Soc Rev 44, 2702-2712 (2015).
88. M. Chhowalla, D. Voiry, J. E. Yang, H. S. Shin, K. P. Loh, Phase-engineered transition-metal dichalcogenides for energy and electronics. Mrs Bull 40, 585-591 (2015).
89. M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10, 313-318 (2015).
90. R. Kappera et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater 13, 1128-1134 (2014).
91. H. Pan, Y. W. Zhang, Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. J Mater Chem 22, 7280-7290 (2012).
92. A. Ramasubramaniam, D. Naveh, Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys Rev B 87, (2013).
93. C. Ataca, S. Ciraci, Functionalization of Single-Layer MoS2 Honeycomb Structures. J Phys Chem C 115, 13303-13311 (2011).
94. R. Shidpour, M. Manteghian, A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2, 1429-1435 (2010).
95. J. G. He, K. C. Wu, R. J. Sa, Q. H. Li, Y. Q. Wei, Magnetic properties of nonmetal atoms absorbed MoS2 monolayers. Appl Phys Lett 96, (2010).
96. R. Jansen, Silicon spintronics. Nat Mater 11, 400-408 (2012).
97. L. Cai et al., Vacancy-Induced Ferromagnetism of MoS2 Nanosheets. J Am Chem Soc 137, 2622-2627 (2015).
98. E. D. Risberg, F. Jalilehvand, B. O. Leung, L. G. M. Pettersson, M. Sandstrom, Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide. Dalton T, 3542-3558 (2009).
99. G. N. George, M. L. Gorbaty, Sulfur K-Edge X-Ray Absorption-Spectroscopy of Petroleum Asphaltenes and Model Compounds. J Am Chem Soc 111, 3182-3186 (1989).
100. M. A. Vairavamurthy et al., Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy. Energ Fuel 11, 546-553 (1997).
101. D. Guay, W. M. R. Divigalpitiya, D. Belanger, X. H. Feng, Chemical Bonding in Restacked Single-Layer Mos(2) by X-Ray-Absorption Spectroscopy. Chem Mater 6, 614-619 (1994).
102. M. F. Smith et al., Identification of bulk and surface sulfur impurities in TiO2 by synchrotron x-ray absorption near edge structure. Appl Phys Lett 91, (2007).
103. C. Y. Yang et al., Structural imperfections and attendant localized/itinerant ferromagnetism in ZnO nanoparticles. J Phys D Appl Phys 47, (2014).
104. H. Thakur et al., Irradiation induced ferromagnetism at room temperature in TiO2 thin films: X-ray magnetic circular dichroism characterizations. Appl Phys Lett 98, (2011).
105. R. K. Singhal, S. Kumar, P. Kumari, Y. T. Xing, E. Saitovitch, Evidence of defect-induced ferromagnetism and its "switch" action in pristine bulk TiO2. Appl Phys Lett 98, (2011).
106. J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4, 173-179 (2005).
107. V. K. Sangwan et al., Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotechnol 10, 403-406 (2015).
108. G. Pagona, C. Bittencourt, R. Arenal, N. Tagmatarchis, Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid. Chem Commun 51, 12950-12953 (2015).
109. S. P. Shi, D. Q. Gao, B. R. Xia, P. T. Liu, D. S. Xue, Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase. J Mater Chem A 3, 24414-24421 (2015).
110. S. Mathew et al., Magnetism in MoS2 induced by proton irradiation. Appl Phys Lett 101, (2012).
111. S. M. Yan et al., Enhancement of magnetism by structural phase transition in MoS2. Appl Phys Lett 106, (2015).
112. Y. C. Lin, D. O. Dumcencon, Y. S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol 9, 391-396 (2014).
113. J. Wu et al., Layer Thinning and Etching of Mechanically Exfoliated MoS2 Nanosheets by Thermal Annealing in Air. Small 9, 3314-3319 (2013).
114. M. Yamamoto, T. L. Einstein, M. S. Fuhrer, W. G. Cullen, Anisotropic Etching of Atomically Thin MoS2. J Phys Chem C 117, 25643-25649 (2013).
115. F. Farges, R. Siewert, G. E. Brown, A. Guesdon, G. Morin, Structural environments around molybdenum in silicate glasses and melts. I. Influence of composition and oxygen fugacity on the local structure of molybdenum. Can Mineral 44, 731-753 (2006).
116. J. Berry, N. Provatas, J. Rottler, C. W. Sinclair, Defect stability in phase-field crystal models: Stacking faults and partial dislocations. Phys Rev B 86, (2012).
117. R. Kappera et al., Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. Apl Mater 2, (2014).
118. T. T. Wu et al., Low-Cost and TSV-free Monolithic 3D-IC with Heterogeneous Integration of Logic, Memory and Sensor Analogy Circuitry for Internet of Things. 2015 Ieee International Electron Devices Meeting (Iedm), (2015).
119. J. Derakhshandeh et al., Monolithic 3-D Integration of SRAM and Image Sensor Using Two Layers of Single-Grain Silicon. Ieee T Electron Dev 58, 3954-3961 (2011).
120. M. Goto et al., Three-Dimensional Integrated CMOS Image Sensors with Pixel-Parallel A/D Converters Fabricated by Direct Bonding of SOI Layers. Int El Devices Meet, (2014).
121. S. F. Tedde, P. Buchele, R. Fischer, F. Steinbacher, O. Schmidt, Imaging with Organic and Hybrid Photodetectors. Int El Devices Meet, (2014).
122. C. C. Yang et al., Logic/Memory Hybrid 3D Sequentially Integrated Circuit Using Low Thermal Budget Laser Process. 2015 Ieee Soi-3d-Subthreshold Microelectronics Technology Unified Conference (S3s), (2015).
123. Q. Cao et al., Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat Nanotechnol 8, 180-186 (2013).
124. H. G. Yan et al., Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7, 330-334 (2012).
125. G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, A. V. Gusakov, Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60, 17136-17149 (1999).
126. T. Nakanishi, T. Ando, Optical Response of Finite-Length Carbon Nanotubes. J Phys Soc Jpn 78, (2009).
127. Z. W. Shi et al., Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat Photonics 9, 515-519 (2015).
128. I. S. Lamata, P. Alonso-Gonzalez, R. Hillenbrand, A. Y. Nikitin, Plasmons in Cylindrical 2D Materials as a Platform for Nanophotonic Circuits. Acs Photonics 2, 280-286 (2015).
129. L. Martin-Moreno, F. J. G. de Abajo, F. J. Garcia-Vidal, Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. Phys Rev Lett 115, (2015).
130. F. Bommeli et al., Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes. Solid State Commun 99, 513-517 (1996).
131. N. Akima et al., Strong anisotropy in the far-infrared absorption spectra of stretch-aligned single-walled carbon nanotubes. Advanced Materials 18, 1166-+ (2006).
132. M. V. Shuba et al., Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Phys Rev B 85, (2012).
133. Q. Zhang et al., Plasmonic Nature of the Terahertz Conductivity Peak in Single-Wall Carbon Nanotubes. Nano Lett 13, 5991-5996 (2013).
134. T. Morimoto et al., Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes. Acs Nano 8, 9897-9904 (2014).
135. D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, S. J. Han, Ultrasensitive Plasmonic Detection of Molecules with Graphene. Acs Photonics 3, 553-557 (2016).
136. A. Hartstein, J. R. Kirtley, J. C. Tsang, Enhancement of the Infrared-Absorption from Molecular Monolayers with Thin Metal Overlayers. Phys Rev Lett 45, 201-204 (1980).
137. F. Le et al., Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. Acs Nano 2, 707-718 (2008).
138. X. W. He, W. L. Gao, Q. Zhang, L. Ren, J. Kono, Carbon-Based Terahertz Devices. Proc Spie 9476, (2015).
139. X. W. He et al., Carbon Nanotube Terahertz Detector. Nano Lett 14, 3953-3958 (2014).
140. H. G. Yan et al., Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7, 394-399 (2013).
141. R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang, Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys 10, (2008).
142. J. Kong et al., Nanotube molecular wires as chemical sensors. Science 287, 622-625 (2000).
143. A. Kucirkova, K. Navratil, Interpretation of Infrared Transmittance Spectra of Sio2 Thin-Films. Appl Spectrosc 48, 113-120 (1994).
144. U. Kuhlmann et al., Infrared active phonons in single-walled carbon nanotubes. Chem Phys Lett 294, 237-240 (1998).
145. F. Lapointe et al., Fano Resonances in the Midinfrared Spectra of Single-Walled Carbon Nanotubes. Phys Rev Lett 109, (2012).
146. M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys Rep 409, 47-99 (2005).
147. U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts. Phys Rev 124, 1866-& (1961).
148. B. Luk'yanchuk et al., The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9, 707-715 (2010).
149. B. Gallinet, O. J. F. Martin, Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys Rev B 83, (2011).
150. P. M. Anisimov, J. P. Dowling, B. C. Sanders, Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency. Phys Rev Lett 107, (2011).
151. N. Murata, R. Hata, H. Ishihara, Crossover between Energy Transparency Resonance and Rabi Splitting in Antenna-Molecule Coupled Systems. J Phys Chem C 119, 25493-25498 (2015).
152. S. Dassarma, W. Y. Lai, Screening and Elementary Excitations in Narrow-Channel Semiconductor Microstructures. Phys Rev B 32, 1401-1404 (1985).
153. A. R. Goni et al., One-Dimensional Plasmon Dispersion and Dispersionless Intersubband Excitations in Gaas Quantum Wires. Phys Rev Lett 67, 3298-3301 (1991).
154. J. Hao, G. W. Hanson, Electromagnetic scattering from finite-length metallic carbon nanotubes in the lower IR bands. Phys Rev B 74, (2006).
155. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt Lett 22, 475-477 (1997).
156. F. H. L. Koppens, D. E. Chang, F. J. G. de Abajo, Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett 11, 3370-3377 (2011).
157. H. G. Yan, T. Low, F. Guinea, F. N. Xia, P. Avouris, Tunable Phonon-Induced Transparency in Bilayer Graphene Nanoribbons. Nano Lett 14, 4581-4586 (2014).
158. L. Ju et al., Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6, 630-634 (2011).
159. K. J. Erikson et al., Figure of Merit for Carbon Nanotube Photothermoelectric Detectors. Acs Nano 9, 11618-11627 (2015).
160. A. E. Nikolaenko et al., Carbon Nanotubes in a Photonic Metamaterial. Phys Rev Lett 104, (2010).
161. S. de Vega, J. D. Cox, F. J. G. de Abajo, Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters. Phys Rev B 94, (2016).
162. A. L. Falk et al., Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes. Phys Rev Lett 118, (2017).
163. F. Rana, Graphene terahertz plasmon laser: A laser in a circuit. Ieee Leos Ann Mtg, 862-863 (2007).
164. X. W. He, F. Leonard, J. Kono, Uncooled Carbon Nanotube Photodetectors. Adv Opt Mater 3, 989-1011 (2015).
165. X. Cai et al., Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat Nanotechnol 9, 814-819 (2014).
166. L. Vicarelli et al., Graphene field-effect transistors as room-temperature terahertz detectors. Nat Mater 11, 865-871 (2012).
167. M. Furchi et al., Microcavity-Integrated Graphene Photodetector. Nano Lett 12, 2773-2777 (2012).
168. S. Thongrattanasiri, F. H. L. Koppens, F. J. G. de Abajo, Complete Optical Absorption in Periodically Patterned Graphene. Phys Rev Lett 108, (2012).
169. K. Mizuno et al., A black body absorber from vertically aligned single-walled carbon nanotubes. P Natl Acad Sci USA 106, 6044-6047 (2009).
170. Y. Liu, S. Wang, H. P. Liu, L. M. Peng, Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat Commun 8, (2017).
171. W. Kim et al., Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett 3, 193-198 (2003).
172. P. Nene et al., Coupling of plasmon modes in graphene microstructures. Appl Phys Lett 105, (2014).
173. L. Ren et al., Carbon Nanotube Terahertz Polarizer. Nano Lett 9, 2610-2613 (2009).
174. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, Hyperbolic metamaterials based on multilayer graphene structures. Phys Rev B 87, (2013).
175. J. J. Liu et al., Quasi-coherent thermal emitter based on refractory plasmonic materials. Opt Mater Express 5, 2721-2728 (2015).
176. A. D. Franklin, Z. H. Chen, Length scaling of carbon nanotube transistors. Nat Nanotechnol 5, 858-862 (2010).
177. D. Shahrjerdi et al., High Device Yield Carbon Nanotube NFETs for High-Performance Logic Applications. 2011 Ieee International Electron Devices Meeting (Iedm), (2011).
178. S. J. Han et al., Carbon Nanotube Complementary Logic based on Erbium Contacts and Self-Assembled High Purity Solution Tubes. 2013 Ieee International Electron Devices Meeting (Iedm), (2013).
179. A. Ohtomo, H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423-426 (2004).
180. N. Reyren et al., Superconducting interfaces between insulating oxides. Science 317, 1196-1199 (2007).
181. O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J Appl Phys 85, 3222-3233 (1999).
182. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, J. Mannhart, Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942-1945 (2006).
183. D. C. Tsui, H. L. Stormer, A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys Rev Lett 48, 1559-1562 (1982).
184. M. Konig et al., Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766-770 (2007).
185. M. S. Xu, T. Liang, M. M. Shi, H. Z. Chen, Graphene-Like Two-Dimensional Materials. Chem Rev 113, 3766-3798 (2013).
186. C. Ataca, H. Sahin, S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. J Phys Chem C 116, 8983-8999 (2012).
187. L. A. Ponomarenko et al., Cloning of Dirac fermions in graphene superlattices. Nature 497, 594-597 (2013).
188. C. R. Dean et al., Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598-602 (2013).
189. B. Hunt et al., Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 340, 1427-1430 (2013).
190. P. Rivera et al., Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun 6, (2015).
191. C. H. Lui et al., Observation of interlayer phonon modes in van der Waals heterostructures. Phys Rev B 91, (2015).
192. H. Fang et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. P Natl Acad Sci USA 111, 6198-6202 (2014).
193. X. P. Hong et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9, 682-686 (2014).
194. E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, N. Gedik, Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2. Nano Lett 16, 7421-7426 (2016).
195. Y. F. Yu et al., Equally Efficient Inter layer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS2/WS2 Heterostructures. Nano Lett 15, 486-491 (2015).
196. J. Zhang et al., Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures. Advanced Materials 28, 1950-+ (2016).
197. X. D. Duan et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol 9, 1024-1030 (2014).
198. K. Chen et al., Lateral Built-In Potential of Monolayer MoS2-WS2 In-Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials 27, 6431-+ (2015).
199. C. M. Huang et al., Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat Mater 13, 1096-1101 (2014).
200. Y. J. Gong et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13, 1135-1142 (2014).
201. X. Q. Zhang, C. H. Lin, Y. W. Tseng, K. H. Huang, Y. H. Lee, Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Lett 15, 410-415 (2015).
202. M. Y. Li et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524-528 (2015).
203. H. Heo et al., Rotation-Misfit-Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition-Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls. Advanced Materials 27, 3803-3810 (2015).
204. Y. J. Gong et al., Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. Nano Lett 15, 6135-6141 (2015).
205. K. Chen et al., Electronic Properties of MoS2-WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. Acs Nano 9, 9868-9876 (2015).
206. J. Y. Chen et al., Lateral Epitaxy of Atomically Sharp WSe2/WS2 Heterojunctions on Silicon Dioxide Substrates. Chem Mater 28, 7194-7197 (2016).
207. Y. D. Yoo, Z. P. Degregorio, J. E. Johns, Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS2 and WS2. J Am Chem Soc 137, 14281-14287 (2015).
208. M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdorfer, T. Mueller, Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Lett 14, 4785-4791 (2014).
209. R. Cheng et al., Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p-n Diodes. Nano Lett 14, 5590-5597 (2014).
210. Y. X. Deng et al., Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode. Acs Nano 8, 8292-8299 (2014).
211. C. H. Lee et al., Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nanotechnol 9, 676-681 (2014).
212. Q. Zhang et al., Two-Dimensional Layered Heterostructures Synthesized from Core-Shell Nanowires. Angew Chem Int Edit 54, 8957-8960 (2015).
213. Y. C. Lin et al., Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat Commun 6, (2015).
214. Q. L. Feng et al., Growth of Large-Area 2D MoS2(l_,)Se2, Semiconductor. Advanced Materials 26, 2648-2653 (2014).
215. Z. Lin et al., Facile synthesis of MoS2 and MoXW1-xS2 triangular monolayers. Apl Mater 2, (2014).
216. Z. Q. Wang et al., Chemical Vapor Deposition of Monolayer Mo1-xWxS2 Crystals with Tunable Band Gaps. Sci Rep-Uk 6, (2016).
217. Q. L. Feng et al., Growth of MoS2(1-x)Se2x (x=0.41-1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. Acs Nano 9, 7450-7455 (2015).
218. W. T. Zhang et al., CVD synthesis of Mo(1-x)WxS2 and MoS2(1-x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554-13560 (2015).
219. X. D. Duan et al., Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. Nano Lett 16, 264-269 (2016).
220. S. Susarla et al., Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. Adv Mater, (2017).
221. H. L. Li et al., Growth of Alloy MoS2xSe2(1-x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. J Am Chem Soc 136, 3756-3759 (2014).
222. J. S. Ross et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol 9, 268-272 (2014).
223. B. W. H. Baugher, H. O. H. Churchill, Y. F. Yang, P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nanotechnol 9, 262-267 (2014).
224. A. Pospischil, M. M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nanotechnol 9, 257-261 (2014).
225. H. Fang et al., Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Lett 13, 1991-1995 (2013).
226. H. Fang et al., High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett 12, 3788-3792 (2012).
227. L. L. Yu et al., High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. Nano Lett 15, 4928-4934 (2015).
228. P. Nemes-Incze, Z. Osvath, K. Kamaras, L. P. Biro, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46, 1435-1442 (2008).
229. J. W. Shi et al., Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton. Nat Commun 8, (2017).
230. A. G. Rinzler et al., Unraveling Nanotubes - Field-Emission from an Atomic Wire. Science 269, 1550-1553 (1995).
231. W. A. Deheer, A. Chatelain, D. Ugarte, A Carbon Nanotube Field-Emission Electron Source. Science 270, 1179-1180 (1995).
232. S. S. Fan et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512-514 (1999).
233. K. S. Hazra et al., Dramatic Enhancement of the Emission Current Density from Carbon Nanotube Based Nanosize Tips with Extremely Low Onset Fields. Acs Nano 3, 2617-2622 (2009).
234. S. Sridhar et al., Field Emission with Ultra low Turn On Voltage from Metal Decorated Carbon Nanotubes. Acs Nano 8, 7763-7770 (2014).
235. H. M. Wei et al., Ice-Assisted Transfer of Carbon Nanotube Arrays. Nano Lett 15, 1843-1848 (2015).
236. H. B. Zeng et al., Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field-Emission. Adv Funct Mater 19, 3165-3172 (2009).
237. X. G. Zhang, S. T. Pantelides, Screening in Nanowires and Nanocontacts: Field Emission, Adhesion Force, and Contact Resistance. Nano Lett 9, 4306-4310 (2009).
238. T. Y. Zhai et al., Centimeter-Long V2O5 Nanowires: From Synthesis to Field-Emission, Electrochemical, Electrical Transport, and Photoconductive Properties. Advanced Materials 22, 2547-2552 (2010).
239. T. Yu et al., Controlled growth and field-emission properties of cobalt oxide nanowalls. Advanced Materials 17, 1595-+ (2005).
240. Y. Wang, Y. M. Yang, Z. Z. Zhao, C. Zhang, Y. H. Wu, Local electron field emission study of two-dimensional carbon. Appl Phys Lett 103, (2013).
241. A. Zhbanov, S. Yang, Field enhancement factor and optimal emitter density in a nanowall array. Carbon 75, 289-298 (2014).
242. J. E. Jaskie, Diamond-based field-emission displays. Mrs Bull 21, 59-64 (1996).
243. X. S. Fang, Y. Bando, U. K. Gautam, C. Ye, D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications. J Mater Chem 18, 509-522 (2008).
244. M. E. Swanwick et al., Nanostructured Ultrafast Silicon-Tip Optical Field-Emitter Arrays. Nano Lett 14, 5035-5043 (2014).
245. J. Christensen et al., Extraordinary absorption of sound in porous lamella-crystals. Sci Rep-Uk 4, (2014).
246. H. Yamaguchi et al., Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. Acs Nano 5, 4945-4952 (2011).
247. Y. F. Guo, W. L. Guo, Electronic and Field Emission Properties of Wrinkled Graphene. J Phys Chem C 117, 692-696 (2013).
248. S. Nandy et al., Efficient Field Emission from Vertically Aligned Cu2O1-delta(111) Nanostructure Influenced by Oxygen Vacancy. Adv Funct Mater 25, 947-956 (2015).
249. K. S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
250. K. S. Novoselov et al., Room-temperature quantum hall effect in graphene. Science 315, 1379-1379 (2007).
251. D. Chimene, D. L. Alge, A. K. Gaharwar, Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects. Advanced Materials 27, 7261-7284 (2015).
252. G. X. Bai et al., 2D Layered Materials of Rare-Earth Er-Doped MoS2 with NIR-to-NIR Down- and Up-Conversion Photoluminescence. Advanced Materials 28, 7472-7477 (2016).
253. Y. Chen, L. Gan, H. Q. Li, Y. Ma, T. Y. Zhai, Achieving Uniform Monolayer Transition Metal Dichalcogenides Film on Silicon Wafer via Silanization Treatment: A Typical Study on WS2. Advanced Materials 29, (2017).
254. K. F. Mak, K. L. He, J. Shan, T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7, 494-498 (2012).
255. W. Z. Wu et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470-+ (2014).
256. Z. L. Jin et al., A Revisit to High Thermoelectric Performance of Single-layer MoS2. Sci Rep-Uk 5, (2015).
257. X. Z. Liu et al., Strong light-matter coupling in two-dimensional atomic crystals. Nat Photonics 9, 30-34 (2015).
258. F. N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat Photonics 8, 899-907 (2014).
259. Y. Liu et al., Van der Waals heterostructures and devices. Nat Rev Mater 1, (2016).
260. Z. M. Xiao et al., Field Electron Emission Characteristics and Physical Mechanism of Individual Single-Layer Graphene. Acs Nano 4, 6332-6336 (2010).
261. X. L. Wei, Q. Chen, L. M. Peng, Electron emission from a two-dimensional crystal with atomic thickness. Aip Adv 3, (2013).
262. R. V. Kashid et al., Enhanced Field-Emission Behavior of Layered MoS2 Sheets. Small 9, 2730-2734 (2013).
263. A. P. Murawala, T. A. J. Loh, D. H. C. Chua, Synthesis of MoS2 nano-petal forest supported on carbon nanotubes for enhanced field emission performance. J Appl Phys 116, (2014).
264. D. J. Late et al., Pulsed Laser-Deposited MoS2 Thin Films on W and Si: Field Emission and Photoresponse Studies. Acs Appl Mater Inter 6, 15881-15888 (2014).
265. C. S. Rout et al., Superior Field Emission Properties of Layered WS2-RGO Nanocomposites. Sci Rep-Uk 3, (2013).
266. S. R. Suryawanshi, P. S. Kolhe, C. S. Rout, D. J. Late, M. A. More, Spectral analysis of the emission current noise exhibited by few layer WS2 nanosheets emitter. Ultramicroscopy 149, 51-57 (2015).
267. C. Q. Song et al., Highly efficient field emission properties of a novel layered VS2/ZnO nanocomposite and flexible VS2 nanosheet. J Mater Chem C 2, 4196-4202 (2014).
268. C. S. Rout et al., Metallic Few-Layer Flowerlike VS2 Nanosheets as Field Emitters. Eur J Inorg Chem, 5331-5336 (2014).
269. C. S. Rout et al., Enhanced field emission properties of doped graphene nanosheets with layered SnS2. Appl Phys Lett 105, (2014).
270. H. H. Huang et al., Field electron emission of layered Bi2Se3 nanosheets with atom-thick sharp edges. Nanoscale 6, 8306-8310 (2014).
271. B. Das, D. Sarkar, S. Maity, K. K. Chattopadhyay, Ag decorated topological surface state protected hierarchical Bi2Se3 nanoflakes for enhanced field emission properties. J Mater Chem C 3, 1766-1775 (2015).
272. Y. Huang, J. C. She, W. J. Yang, S. Z. Deng, N. S. Xu, Controlled assembly of layer-by-layer stacking continuous graphene oxide films and their application for actively modulated field electron emission cathodes. Nanoscale 6, 4250-4257 (2014).
273. R. Roy, A. Jha, D. Sen, D. Banerjee, K. K. Chattopadhyay, Unique quasi-vertical alignment of RGO sheets under an applied non-uniform DC electric field for enhanced field emission. J Mater Chem C 2, 7608-7613 (2014).
274. J. D. Carey, R. D. Forrest, S. R. P. Silva, Origin of electric field enhancement in field emission from amorphous carbon thin films. Appl Phys Lett 78, 2339-2341 (2001).
275. D. X. Ye, S. Moussa, J. D. Ferguson, A. A. Baski, M. S. El-Shall, Highly Efficient Electron Field Emission from Graphene Oxide Sheets Supported by Nickel Nanotip Arrays. Nano Lett 12, 1265-1268 (2012).
276. G. Viskadouros et al., Enhanced Field Emission of WS2 Nanotubes. Small 10, 2398-2403 (2014).
277. A. Salimath, B. Ghosh, Effect of electric field and magnetic field on spin transport in bilayer graphene armchair nanoribbons: A Monte Carlo simulation study. Curr Appl Phys 14, 1526-1530 (2014).
278. Q. Yue et al., Bandgap tuning in armchair MoS2 nanoribbon. J Phys-Condens Mat 24, (2012).
279. J. S. Qi, X. Li, X. F. Qian, J. Feng, Bandgap engineering of rippled MoS2 monolayer under external electric field. Appl Phys Lett 102, (2013).
280. J. Feng, X. F. Qian, C. W. Huang, J. Li, Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics 6, 865-871 (2012).
281. Z. Liu et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun 5, (2014).
282. S. X. Yang et al., Tuning the Optical, Magnetic, and Electrical Properties of ReSe2 by Nanoscale Strain Engineering. Nano Lett 15, 1660-1666 (2015).
283. T. H. Yang et al., High Density Unaggregated Au Nanoparticles on ZnO Nanorod Arrays Function as Efficient and Recyclable Photocatalysts for Environmental Purification. Small 9, 3169-3182 (2013).
284. Y. H. Chang et al., Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection. Acs Nano 8, 8582-8590 (2014).
285. V. M. Pereira, A. H. Castro Neto, H. Y. Liang, L. Mahadevan, Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys Rev Lett 105, 156603 (2010).
286. A. Reserbat-Plantey et al., Strain Superlattices and Macroscale Suspension of Graphene Induced by Corrugated Substrates. Nano Lett 14, 5044-5051 (2014).
287. Y. X. Lin et al., Dielectric Screening of Excitons and Trions in Single-Layer MoS2. Nano Lett 14, 5569-5576 (2014).
288. N. Scheuschner et al., Photoluminescence of freestanding single- and few-layer MoS2. Phys Rev B 89, (2014).
289. X. Lu et al., Large-Area Synthesis of Monolayer and Few-Layer MoSe2 Films on SiO2 Substrates. Nano Lett 14, 2419-2425 (2014).
290. J. S. Ross et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4, (2013).
291. B. Chakraborty et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys Rev B 85, (2012).
292. R. Roldan, A. Castellanos-Gomez, E. Cappelluti, F. Guinea, Strain engineering in semiconducting two-dimensional crystals. J Phys-Condens Mat 27, (2015).
293. K. Liu et al., Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures. Nano Lett 14, 5097-5103 (2014).
294. L. M. Baskin, O. I. Lvov, G. N. Fursey, General Features of Field Emission from Semiconductors. Phys Status Solidi B 47, 49 (1971).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *