|
References [1] A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007. [2] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M.G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192-200, 2012. [3] Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z.Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H. M. Cheng, “Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation,” ACS Nano, vol. 3, no. 2, pp. 411–417, 2009. [4] T. Wu, J. Gao, X. Xu, W. Wang, C. Gao, and H. Qiu, “A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles,” Nanotechnology, vol. 24, no. 21, p. 215604, 2013. [5] Y. Si and E. T. Samulski, “Synthesis of water soluble graphene,” Nano Lett., vol. 8, no. 6, pp. 1679–1682, 2008. [6] K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J. N. Coleman, “Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids,” Nat. Mater., vol. 13, no. 6, pp. 624-630 (2014). [7] L. Y. Jiao, L. Zhang, X. R Wang, G. Diankov, and H. J. Dai, “Narrow graphene nanoribbons from carbon nanotubes,” Nature, vol. 458, no. 7240, pp. 877-880 (2009). [8] S. Kim, R. Sergiienko, E. Shibata, Y. Hayasaka, and T. Nakamura, “Production of graphite nanosheets by low-current plasma discharge in liquid ethanol,” Mater. Trans., vol. 51, no. 8, pp. 1455-1459 (2010). [9] W. F. Zhao, M. Fang, F. R. Wu, H. Wu, L. W. Wang, and G. H. Chen, “Preparation of graphene by exfoliation of graphite using wet ball milling,” J. Mater. Chem., vol. 20, no. 28, pp. 5817-5819, 2010. [10] S. H. Aboutalebi, M. M. Gudarzi, Q. BinZheng, and J. K. Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater., vol. 21, no. 15, pp. 2978–2988, 2011. [11] Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater., vol. 22, no. 35, pp. 3906-3924, 2010. [12] H. Y. He, J. Klinowski, M. Forster, and A. Lerf, “A new structural model for graphite oxide,” Chem. Phys. Lett., vol. 287, pp. 53-56, 1998. [13] D. R. Dreyer, S. Park, C. W. Bielawski, an R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev., vol. 39, no. 1, pp. 228–240, 2010. [14] H.C. Gao, Y.M. Sun, J.J Zhou, R. Xu, and H.W. Duan, “Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification,” ACS Appl. Mater. Interfaces, vol. 5, no. 2, pp. 425-432, 2013. [15] Z. Dong, D.Wang, X. Liu, X. Pei, L. Chen, and J. Jin, “Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity,” J. Mater. Chem. A, vol. 2, no. 14, pp. 5034–5040, 2014. [16] D. D. Nguyen, N. H. Tai, S. B. Lee, and W. S. Kuo, “Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method,” Energy Environ. Sci., vol. 5, no. 7, pp. 7908, 2012. [17] J. Zhang, J. Zhang, F. Zhang, H. Yang, X. Huang, H. Liu, and S. Guo, “Graphene oxide as a matrix for enzyme immobilization,” Langmuir, vol. 26, no. 9, pp. 6083–6085, 2010. [18] Q. Li, F. Fan, Y. Wang, W. Feng, and P. Ji, “Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent,” Ind. Eng. Chem. Res., vol. 52, no. 19, pp. 6343–6348, 2013. [19] Y. Xu, K. Sheng, C. Li, and G. Shi, “Self-assembled graphene hydrogel via a one-step hydrothermal process,” ACS Nano, vol. 4, no. 7, pp. 4324–4330, 2010. [20] S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R. B. Kaner, “A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents,” ACS Nano, vol. 4, no. 7, pp. 3845–3852, 2010. [21] G. Williams, B. Seger, and P. V. Kamt, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano, vol. 2, no. 7, pp. 1487–1491, 2008. [22] W. Chen, L. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C, vol. 114, no. 47, pp. 19885–19890, 2010. [23] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007. [24] M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions,” J. Phys. Chem. C, vol. 114, no. 14, pp. 6426–6432, 2010. [25] S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, and R. S. Ruoff, “Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition,” J. Phys. Chem. Lett., vol. 1, no. 8, pp. 1259–1263, 2010. [26] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991. [27] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, 1993. [28] X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, “Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates,” Nano Lett., vol. 9, no. 9, pp. 3137–3141, 2009. [29] J. W. Mintmire, B. I. Dunlap, and C. T.White, “Are fullerene tubules metallic?,” Phys. Rev. Lett., vol. 68, no. 5, pp. 631–634, 1992. [30] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, ”Electrical conductivity of indivial carbon nanotubes,” Nature, vol. 382, no. 4, pp. 54-56, 1993. [31] T. Lee, C. H. Ooi, R.Othman, and F. Y. Yeoh, “Activated carbon fiber- the hybrid of carbon fiber and activated carbon,” Rev. Adv. Mater. Sci., vol. 36, pp. 118–136, 2014. [32] K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, “High-performance carbon nanotube fiber,” Science, vol. 318, no. 5858, pp. 1892–1895, 2007. [33] M. D. Stoller, S. Park, Z. Yanwu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008. [34] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett., vol. 92, no. 15, pp. 151911, 2008. [35] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008. [36] P. Blake, P. D. Brimicombe, R. R.Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene- based liquid crystal device,” Nano Lett., vol. 8, no. 6, pp. 1704–1708, 2008. [37] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: A review,” Electroanalysis, vol. 22, no. 10. pp. 1027–1036, 2010. [38] D. S. Yu, L. M. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors,” J. Phys. Chem. Lett., vol. 1, no. 2, pp. 467-470, 2010. [39] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature, vol. 448, no. 7152, pp. 457–460, 2007. [40] B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, “3D macroporous graphene frameworks for supercapacitors with high energy and power densities,” ACS Nano, vol. 6, no. 5, pp. 4020–4028, 2012. [41] C. Li and G. Shi, “Three-dimensional graphene architectures,” Nanoscale, vol. 4, no. 18, pp. 5549–63, 2012. [42] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, “Electrochemical biosensors,” Chem. Soc. Rev., vol. 39, no. 5, p. 1747, 2010. [43] J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, “Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring,” ACS Appl. Mater. Interfaces, vol. 7, no. 11, pp. 6317–6324, 2015. [44] L. Chen, X. Wang, X. Zhang, and H. Zhang, “3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2,” J. Mater. Chem., vol. 22, no. 41, p. 22090, 2012. [45] Y. Z. Zhang, G. Q. Mo, X. W. Li, W. D. Zhang, J. Q. Zhang, J. S. Ye, X. D. Huang, and C. Z. Yu, “A graphene modified anode to improve the performance of microbial fuel cells,” J. Power Sources, vol. 196, no. 13, pp. 5402–5407, 2011. [46] X. Wang, J. Wang, H. Cheng, P. Yu, J. Ye, and L. Mao, “Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices,” Langmuir, vol. 27, no. 17, pp. 11180–11186, 2011. [47] J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D.Vinh, and H.Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc., vol. 133, no. 17, pp. 6825–6831, 2011. [48] F. Zhou, D. Xing, Z. Ou, B.Wu, D. E.Resasco, and W. R.Chen, “Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.,” J. Biomed. Opt., vol. 14, no. 2, p. 21009, 2014. [49] K. Yang, L. Feng, X. Shi, and Z. Liu, “Nano-graphene in biomedicine: theranostic applications,” Chem. Soc. Rev., vol. 42, no. 2, pp. 530–547, 2013. [50] P. Kumar, K. S. Subrahmanyam, and C. N. R. Rao, “Graphene produced by radiation- induced reduction of graphene oxide,” Int. J. Nanosci., vol. 10, pp. 559–566, 2010. [51] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B.Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science, vol. 297, no. 5581, pp. 593–596, 2002. [52] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett., vol. 10, no. 9, pp. 3318–3323, 2010. [53] Y. Mohan, S. Manoj Muthu Kumar, and D. Das, “Electricity generation using microbial fuel cells,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 423–426, 2008. [54] K. Rabaey and W. Verstraete, “Microbial fuel cells: Novel biotechnology for energy generation,” Trends Biotechnol., vol. 23, no. 6. pp. 291–298, 2005. [55] A. Shukla, P. Suresh, S. Berchmans, and A. Rajendran, “Biological fuel cells and their applications,” Curr. Sci., vol. 87, no. 4, pp. 455–468, 2004. [56] C. A.Vega and I. Fernández, “Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens,” Bioelectrochemistry Bioenerg., vol. 17, no. 2, pp. 217–222, 1987. [57] L. M. Tender, S. A. Gray, E. Groveman, D. A. Lowy, P. Kauffman, J. Melhado, R. C. Tyce, D. Flynn, R. Petrecca, J. Dobarro, “The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy,” J. Power Sources, vol. 179, no. 21, pp. 571–575, 2008. [58] Y. Yang, G. Sun, and M. Xu, “Microbial fuel cells come of age,” J. Chem. Technol. Biotechnol., vol. 86, pp. 625–632, 2011. [59] J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S.Cho, and B. H. Kim, “Construction and operation of a novel mediator- and membrane-less microbial fuel cell,” Process Biochem., vol. 39, no. 8, pp. 1007–1012, 2004. [60] B. E. Logan and J. M. Regan, “Microbial fuel cells--challenges and applications.,” Environ. Sci. Technol., vol. 40, no. 17, pp. 5172–5180, 2006. [61] K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency,” Biotechnol. Lett., vol. 25, no. 18, pp. 1531–1535, 2003. [62] E. Herrero-Hernandez, T. J. Smith, and R. Akid, “Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell,” Biosens. Bioelectron., vol. 39, no. 1, pp. 194–198, 2013. [63] D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus, “Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production,” Appl. Environ. Microbiol., vol. 65, no. 7, pp. 2912–2917, 1999. [64] D. R. Bond, D. E.Holmes, L. M.Tender, D. R.Lovley, C. E.Reimers, L. M.Tender, S.Fertig, W. Wang, D. L. Lane, J. R. Marchesi, D. J. Lonergan, N. Pfennig, H. Biebl, E. E. Roden, D. R. Lovley, D. R. Lovley, F. H. Chapelle, D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, J. C. Woodward, D. R. Lovley, D. H. Park, J. G. Zeikus, R. Emde, A. Swain, B. Schink, S. D. Roller, J. N. Rooney-Varga, R. T. Anderson, J. L. Fraga, D. Ringelberg, D. R. Lovley, O. L. Snoeyenbos-West, K. P. Nevin, R. T. Anderson, D. R. Lovley, D. R. Lovley, J. C. Woodward, and F. H. Chapelle, “Electrode-reducing microorganisms that harvest energy from marine sediments.,” Science, vol. 295, no. 5554, pp. 483–5, 2002. [65] B. E. Logan, J. M. Regan,“ Electricity-producing bacterial communities in microbial fuel cells.,” Trends Microbiol., vol. 14, no. 12, pp. 512–8, 2006. [66] Z. Du, H. Li, and T. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment,” Biotechnol. Adv., vol. 25, no. 5, pp. 464–82, 2007. [67] B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, “Microbial fuel cells: Methodology and technology,” Environ. Sci. Technol., vol. 40, no. 17. pp. 5181–5192, 2006. [68] S. Cheng and B. E. Logan, “Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells,” Electrochem. Commun., vol. 9, no. 3, pp. 492–496, 2007. [69] Y. Qiao, C. M. Li, S. J. Bao, and Q. L. Bao, “Carbon nanotube/polyaniline composite as anode material for microbial fuel cells,” J. Power Sources, vol. 170, no. 1, pp. 79–84, 2007. [70] X. Wang, S. Cheng, Y. Feng, M. D. Merrill, T. Saito, and B. E. Logan, “Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells,” Environ. Sci. Technol., vol. 43, no. 17, pp. 6870–6874, 2009. [71] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann, “Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells,” Electrochem. Commun., vol. 7, no. 12, pp. 1405–1410, 2005. [72] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann, “Challenges and constraints of using oxygen cathodes in microbial fuel cells,” Environ. Sci. Technol., vol. 40, no. 17, pp. 5193–5199, 2006. [73] G. G. Kumar, V. G. S. Sarathi, and K. S. Nahm, “Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells,” Biosens. Bioelectron., vol. 43, no. 1. pp. 461–475, 2013. [74] K. Katuri, M. L. Ferrer, M. C. Gutiérrez, R. Jiménez, F. delMonte, and D. Leech, “Three- dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation,” Energy Environ. Sci., vol. 4, no. 10, p. 4201, 2011. [75] M. C. Gutierrez, Z. Y. Garcia-Carvajal, M. J. Hortiguela, L. Yuste, F. Rojo, M. L. Ferrer, and F. delMonte, “Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli,” J. Mater. Chem., vol. 17, no. 29, pp. 2992–2995, 2007. [76] J. Liu, Y. Qiao, C. X. Guo, S. Lim, H. Song, and C. M. Li, “Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells,” Bioresour. Technol., vol. 114, pp. 275–280, 2012. [77] A. Jain, X. Zhang, G. Pastorella, J. O. Connolly, N. Barry, R. Woolley, S. Krishnamurthy, and E. Marsili, “Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode,” Bioelectrochemistry, vol. 87, pp. 28–32, 2012. [78] T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, “Recent advances in graphene-based biosensors,” Biosens. Bioelectron., vol. 26, no. 12. pp. 4637–4648, 2011. [79] A. Roda, M. Mirasoli, E. Michelini, M. DiFusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: A critical review,” Biosens. Bioelectron., vol. 76, pp. 164–179, 2016. [80] H. Qi, Y. Peng, Q. Gao, and C. Zhang, “Applications of nanomaterials in electrogenerated chemiluminescence biosensors,” Sensors, vol. 9, no. 1. pp. 674–695, 2009. [81] S. E. K. Kirschbaum and A. J. Baeumner, “A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices,” Anal. Bioanal. Chem., vol. 407, no. 14. pp. 3911–3926, 2015. [82] W. Miao and A. J. Bard, “Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres,” Anal. Chem., vol. 76, no. 23, pp. 7109–7113, 2005. [83] G. Jin, L. Lu, X. Gao, M. J. Li, B. Qiu, Z. Lin, H. Yang, and G. Chen, “Magnetic graphene oxide-based electrochemiluminescent aptasensor for thrombin,” Electrochim. Acta, vol. 89, pp. 13–17, 2013. [84] F. Jameison, R. I. Sanchez, L. Dong, J. K. Leland, D. Yost, and M. T. Martin, “Electrochemiluminescence-Based quantitation of classical clinical chemistry analytes,” Anal. Chem., vol. 68, no. 8, pp. 1298–1302, 1996. [85] X. M. Chen, B. Y. Su, X. H. Song, Q. A. Chen, X. Chen, and X. R. Wang, “Recent advances in electrochemiluminescent enzyme biosensors,” Trac-Trends Anal. Chem., vol. 30, no. 5. pp. 665–676, 2011. [86] Y. Yu, Q. Cao, M. Zhou, and H. Cui, “A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer,” Biosens. Bioelectron., vol. 43, no. 1, pp. 137–142, 2013. [87] J. Qian, Z. Zhou, X. Cao, and S. Q. Liu, “Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+-encapsulated silica nanosphere labels,” Anal. Chim. Acta, vol. 665, no. 1, pp. 32–38, 2010. [88] W. Song, H. Li, H. Liu, Z. Wu, W. Qiang, and D. Xu, “Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E,” Electrochem. Commun., vol. 31, pp. 16–19, 2013. [89] S. Xu, Y. Liu, T. Wang, and J. Li, “Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection,” Anal. Chem., vol. 83, no. 10, pp. 3817–3823, 2011. [90] Y. Li, H. Qi, F. Fang, and C. Zhang, “Ultrasensitive electrogenerated chemiluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2′-bipyridyl) ruthenium derivative tags,” Talanta, vol. 72, no. 5, pp. 1704–1709, 2007. [91] C. G. Shi, X. Shan, Z. Q. Pan, J. J. Xu, C. Lu, N. Bao, and H. Y. Gu, “Quantum dot (QD)-modified carbon tape electrodes for reproducible electrochemiluminescence (ECL) emission on a paper-based platform,” Anal. Chem., vol. 84, no. 6, pp. 3033–3038, 2012. [92] D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater., vol. 22, no. 6, pp. 734–738, 2010. [93] B. Jiang, K. G. Yang, Q. Zhao, Q. Wu, Z. Liang, L. H. Zhang, X. J. Peng, Y. K. Zhang, “ Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion” J. Chromatogr. A, vol. 1254, pp. 8-13, 2012. [94] H. Razmi, R. Mohammad-Rezaei, “Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination,” Biosens. Bioelectron., vol. 41, no. 1, pp. 498-504, 2013. [95] M. J. A. Shiddiky, S. Rauf, P. H. Kithva, and M. Trau, “Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers,” Biosens. Bioelectron., vol. 35, no. 1, pp. 251–257, 2012. [96] S. Srivastava, V. Kumar, M. A. Ali, P. R. Solanki, A. Srivastava, G. Sumana, P. S. Saxena, A. G. Joshi, and B. D. Malhotra, “Electrophoretically deposited reduced graphene oxide platform for food toxin detection.,” Nanoscale, vol. 5, no. 7, pp. 3043–51, 2013. [97] A. B. Lowe and C. L. McCormick, “Water-soluble polymers. 84. controlled polymerization in aqueous media of anionic acrylamido monomers via RAFT,” Macromolecules, vol. 34, no. 19, pp. 6561-6564, 2001. [98] H. J. van der Linden, S. Herber, W. Olthuis, and P. Bergveld, “Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis,” Analyst, vol. 128, no. 4, pp. 325–331, 2003. [99] J. Qi, W. Lv, G. Zhang, F. Zhang, and X. Fan, “Poly(N-isopropylacrylamide) on two-dimensional graphene oxide surfaces,” Polym. Chem., vol. 3, no. 3, pp. 621-624, 2012. [100] H. Yang, H. Zhu, M. M. R. M. Hendrix, N. J. H. G. M. Lousberg, G. DeWith, A. C. C. Esteves, and J. H. Xin, “Temperature-triggered collection and release of water from fogs by a sponge-like cotton fabric,” Adv. Mater., vol. 25, no. 8, pp. 1150–1154, 2013. [101] Y. Xiang, Z. Peng, and D. Chen, “A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties,” Eur. Polym. J., vol. 42, no. 9, pp. 2125–2132, 2006. [102] T. Tadros, “Encyclopedia of Colloid and Interface Science,” Berlin-Iteidelberg: Springer, NewYork, 2013 (ebook). [103] A. C. Kumar, H. B. Bohidar, and A. K. Mishra, “The effect of sodium cholate aggregates on thermoreversible gelation of PNIPAM,” Colloid Surf. B-Biointerfaces, vol. 70, no. 1, pp. 60–67, 2009. [104] M. A. Molina, C. R. Rivarola, M. F. Broglia, D. F. Acevedo, and C. A. Barbero, “Smart surfaces: reversible switching of a polymeric hydrogel topography,” Soft Matter, vol. 8, no. 2, pp. 307–310, 2012. [105] Z. Liu, W. Wang, R. Xie, X. J. Ju, and L. Y. Chu, “Stimuli-responsive smart gating membranes.,” Chem. Soc. Rev., vol. 45, no. 3, pp. 460–75, 2016. [106] W. Minghong, B. Bao, J. Chen, Y. Xu, S. Zhou, and Z. T. Ma, “Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one-off switching for controlled release of drugs,” Radiat. Phys. Chem., vol. 56, no. 3, pp. 341–346, 1999. [107] C. Geismann, A. Yaroshchuk, and M. Ulbricht, “Permeability and electrokinetic characterization of poly(ethylene terephthalate) capillary pore membranes with grafted temperature-responsive polymers,” Langmuir, vol. 23, no. 1, pp. 76–83, 2007. [108] L. Liang, M. Shi, V. V. Viswanathan, L. M. Peurrung, and J. S. Young, “Temperature- sensitive polypropylene membranes prepared by plasma polymerization,” J. Memb. Sci., vol. 177, no. 1–2, pp. 97–108, 2000. [109] M. Hesampour, T. Huuhilo, K. Mäkinen, M. Mänttäri, and M. Nyström, “Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes,” J. Memb. Sci., vol. 310, no. 1–2, pp. 85–92, 2008. [110] D. Menne, F. Pitsch, J. E.Wong, A. Pich, and M. Wessling, “Temperature-modulated water filtration using microgel-functionalized hollow-fiber membranes,” Angew. Chemie - Int. Ed., vol. 53, no. 22, pp. 5706–5710, 2014. [111] J. I.Clodt, V. Filiz, S. Rangou, K. Buhr, C. Abetz, D. Höche, J. Hahn, A. Jung, and V. Abetz, “Double stimuli-responsive isoporous membranes via post-modification of ph-sensitive self-assembled diblock copolymer membranes,” Adv. Funct. Mater., vol. 23, no. 6, pp. 731–738, 2013. [112] Z. Ma, X. Jia, J. Hu, Z. Liu, H. Wang, and F. Zhou, “Mussel-inspired thermosensitive polydopamine- graft -poly(N -isopropylacrylamide) coating for controlled-release fertilizer,” J. Agric. Food Chem., vol. 61, no. 50, pp. 12232–12237, 2013. [113] Y. Liu, K. Ai, and L. Lu, “Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields,” Chemical Reviews, vol. 114, no. 9. pp. 5057–5115, 2014. [114] I. You, Y. C. Seo, and H. Lee, “Material-independent fabrication of superhydrophobic surfaces by mussel-inspired polydopamine,” RSC Adv., vol. 4, no. 20, p. 10330, 2014. [115] D. Zhong, Q. Yang, L. Guo, S. Dou, K. Liu, and L. Jiang, “Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration,” Nanoscale, vol. 5, no. 13, pp. 5758–64, 2013. [116] B. P. Tripathi, N. C. Dubey, F. Simon, and M. Stamm, “Thermo responsive ultrafiltration membranes of grafted poly(N-isopropyl acrylamide) via polydopamine,” RSC Adv., vol. 4, no. 64, pp. 34073–34083, 2014. [117] Y. Chen, Y. Bai, S. Chen, J. Ju, Y. Li, T. Wang, and Q. Wang, “Stimuli-responsive composite particles as solid-stabilizers for effective oil harvesting,” ACS Appl. Mater. Interfaces, vol. 6, no. 16, pp. 13334–13338, 2014. [118] R. Ou, J. Wei, L. Jiang, G. P. Simon, and H. Wang, “Robust thermoresponsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation,” Environ. Sci. Technol., vol. 50, no. 2, pp. 906–914, 2016. [119] D. Schmaljohann, “Thermo- and pH-responsive polymers in drug delivery,” Adv. Drug Deliv. Rev., vol. 58, no. 15. pp. 1655–1670, 2006. [120] Y. Kumashiro, M. Yamato, and T. Okano, “Cell attachment-detachment control on temperature-responsive thin surfaces for novel tissue engineering,” Ann. Biomed. Eng., vol. 38, no. 6, pp. 1977–1988, 2010. [121] X. Zhang, C. L. Pint, M. H. Lee, B. E. Schubert, A. Jamshidi, K. Takei, H. Ko, A. Gillies, R. Bardhan, J. J. Urban, M. Wu, R. Fearing, and A. Javey, “Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites,” Nano Lett., vol. 11, no. 8, pp. 3239–3244, 2011. [122] L. Y. Chu, T. Niitsuma, T. Yamaguchi, and S. Nakao, “Thermoresponsive transport through porous membranes with grafted PNIPAM gates,” AICHE J., vol. 49, no. 4, pp. 896–909, 2003. [123] R. Xie, Y. Li, and L. Y. Chu, “Preparation of thermo-responsive gating membranes with controllable response temperature,” J. Memb. Sci., vol. 289, no. 1–2, pp. 76–85, 2007. [124] C. M. Lampert, “Electrochromic materials and devices for energy efficient windows,” Sol. Energy Mater., vol. 11, no. 1–2, pp. 1–27, 1984. [125] A. Seeboth, R. Ruhmann, and O. Mühling, “Thermotropic and thermochromic polymer based materials for adaptive solar control,” Materials, vol. 3, no. 12, pp. 5143–5168, 2010. [126] H. Watanabe, “Intelligent window using a hydrogel layer for energy efficiency,” Sol. Energy Mater. Sol. Cells, vol. 54, no. 1–4, pp. 203–211, 1998. [127] M. Zrínyi, A. Szilágyi, G. Filipcsei, J. Fehér, J. Szalma, and G. Móczár, “Smart gel-glass based on the responsive properties of polymer gels,” Polym. Adv. Technol., vol. 12, no. 9, pp. 501–505, 2001. [128] T. Fischer, R. Lange, and A. Seeboth, “Hybrid solar and electrically controlled transmission of light filters,” Sol. Energy Mater. Sol. Cells, vol. 64, no. 4, pp. 321–331, 2000. [129] H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, M. G. Debije, and A. P. H. J. Schenning, “Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings,” Sci. Rep., vol. 5, no. 11773, 2015. [130] E. Zhang, T. Wang, C. Lian, W. Sun, X. Liu, and Z. Tong, “Robust and thermo-response graphene-PNIPAm hybrid hydrogels reinforced by hectorite clay,” Carbon, vol. 62, pp. 117–126, 2013. [131] S. Huang, J. Shen, N. Li, and M. Ye, “Dual pH- and temperature-responsive hydrogels with extraordinary swelling/deswelling behavior and enhanced mechanical performances,” J. Appl. Polym. Sci., vol. 132, no. 9, pp. 41530, 2015. [132] Z. Li, J. Shen, H. Ma, X. Lu, M. Shi, N. Li, and M. Ye, “Preparation and characterization of pH- and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker,” Soft Matter, vol. 8, no. 11, p. 3139-3145, 2012 [133] C. Hou, Q. Zhang, M. Zhu, Y. Li, and H. Wang, “One-step synthesis of magnetically- functionalized reduced graphite sheets and their use in hydrogels,” Carbon, vol. 49, no. 1, pp. 47–53, 2011. [134] D. Y. Lee, S. Yoon, Y. J. Oh, S. Y. Park, and I. In, “Thermo-responsive assembly of chemically reduced graphene and poly(N-isopropylacrylamide),” Macromol. Chem. Phys., vol. 212, no. 4, pp. 336–341, 2011. [135] X. Ma, Y. Li, W. Wang, Q. Ji, and Y. Xia, “Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior,” Eur. Polym. J., vol. 49, no. 2, pp. 389–396, 2013. [136] C. Hou, Q. Zhang, H. Wang, and Y. Li, “Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials,” J. Mater. Chem., vol. 21, no. 28, p. 10512-10517, 2011. [137] Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, “Graphene and graphene oxide: Biofunctionalization and applications in biotechnology,” Trends Biotechnol., vol. 29, no. 5. pp. 205–212, 2011. [138] J. Liu, L. Cui, and D. Losic, “Graphene and graphene oxide as new nanocarriers for drug delivery applications,” Acta Biomater., vol. 9, no. 12. pp. 9243–9257, 2013. [139] S. Zhu, J. Li, Y. Chen, Z. Chen, C. Chen, Y. Li, Z. Cui, and D. Zhang, “Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release,” J. Nanoparticle Res., vol. 14, no. 9, 2012. [140] C.W. Lo, D. F. Zhu, and H. R. Jiang, “An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite,” Soft Matter, vol. 7, no. 12, pp. 5604-5609, 2011. [141] D. Kim, H. S. Lee, and J. Yoon, “Remote control of volume phase transition of hydrogels containing graphene oxide by visible light irradiation,” Rsc Adv., vol. 4, no. 48, pp. 25379–25383, 2014. [142] J. Wu, Y. Ren, J. Sun, and L. Feng, “Carbon nanotube-coated macroporous Poly(N -isopropylacrylamide) hydrogel and its electrosensitivity,” ACS Appl. Mater. Interfaces, vol. 5, no. 9, pp. 3519–3523, 2013. [143] Y. J. Chen, Y. Li, M. C. Yip, and N. H. Tai, “Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles,” Compos. Sci. Technol., vol. 80, pp. 80–86, 2013. [144] Z. Xu, H. Y. Sun, X. L. Zhao, C. Gao,“ Ultrastrong fibers assembled from giant graphene oxide sheets,” Adv. Mater., vol. 25, no. 2, pp. 188-193, 2013. [145] Z. Liu, L. Jiang, F. Galli, I. Nederlof, R. C. L. Olsthoorn, G. E. M. Lamers, T. H. Oosterkamp, and J. P. Abrahams, “A graphene oxide·streptavidin complex for biorecognition - Towards affinity purification,” Adv. Funct. Mater., vol. 20, no. 17, pp. 2857–2865, 2010. [146] Y. A. Li, Y. J. Chen, and N. H. Tai, “Fast process to decorate silver nanoparticles on carbon nanomaterials for preparing high-performance flexible transparent conductive films,” Langmuir, vol. 29, no. 26, pp. 8433–8439, 2013. [147] H. T. Chou, T. P. Wang, C. Y. Lee, N. H. Tai, and H. Y. Chang, “Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells,” Mater. Sci. Eng. C, vol. 33, no. 2, pp. 989–995, 2013. [148] Y. J. Chen, Y. A. Li, B. T. T. Chu, I. T. Kuo, M. Yip, and N.H. Tai, “Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding,” Compos. Part B Eng., vol. 70, pp. 231–237, 2015. [149] C. M. Werner, K. P. Katuri, A. R. Hari, W. Chen, Z. P. Lai, B. E. Logan, G. L. Amy, P. E. Saikaly,“ Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors - effect of configuration and pplied voltage on performance and membrane fouling,” Environ. Sci. Technol., vol. 50, no. 8, pp. 4439-4447, 2016. [150] W. W. Li and G. P. Sheng, “Microbial fuel cells in power generation and extended applications,” Advances in Biochemical Engineering/Biotechnology, vol. 128. pp. 165–197, 2012. [151] R. E. Griffith, and K. L., Wolf, “Measuring beta-Galactosidase Activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays,” Biochem. Biophys. Res. Commun., vol. 290, pp. 397–402, 2002. [152] N. Liao, Y. Zhuo, Y. Q. Chai, Y. Xiang, J. Han, and R. Yuan, “Reagentless electrochemiluminescent detection of protein biomarker using graphene-based magnetic nanoprobes and poly-l-lysine as co-reactant,” Biosens. Bioelectron., vol. 45, no. 1, pp. 189–194, 2013. [153] Y. T. Li, L. L.Qu, D. W. Li, Q. X. Song, F. Fathi, and Y. T. Long, “Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy,” Biosens. Bioelectron., vol. 43, no. 1, pp. 94–100, 2013. [154] Y. Wan, Y. Wang, J. Wu, and D. Zhang, “Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors,” Anal. Chem., vol. 83, no. 3, pp. 648–653, 2011. [155] L. Wu, J. Wang, J. Ren, W. Li, and X. Qu, “Highly sensitive electrochemiluminescent cytosensing using carbon nanodot@Ag hybrid material and graphene for dual signal amplification.,” Chem. Commun., vol. 49, no. 50, pp. 5675–7, 2013. [156] H. Zhang, M. Wu, J. Xu, and H. Chen, “Signal-on dual-potential electrochemiluminescence based on luminol-Au bifunctional nanoparticles for telomerase detection,” Anal. Chem., vol. 86, pp. 3834–40, 2014. [157] J. Qian, K. Wang, Y. Jin, X. Yang, L. Jiang, Y. Yan, X. Dong, H. Li, and B. Qiu, “Polyoxometalate@magnetic graphene as versatile immobilization matrix of Ru(bpy)32+ for sensitive magneto-controlled electrochemiluminescence sensor and its application in biosensing,” Biosens. Bioelectron., vol. 57, pp. 149–156, 2014. [158] Z. Li, Y. Wang, W. Kong, C. Li, Z. Wang, and Z. Fu, “Highly sensitive near-simultaneous assay of multiple ‘lean meat agent’ residues in swine urine using a disposable electrochemiluminescent immunosensors array,” Biosens. Bioelectron., vol. 39, no. 1, pp. 311–314, 2013. [159] X. Yang, R. Yuan, Y. Chai, Y. Zhuo, L. Mao, and S. Yuan, “Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor,” Biosens. Bioelectron., vol. 25, no. 7, pp. 1851–1855, 2010. [160] Q. Zhang, X. Chen, F. Tu, and C. Yao, “Ultrasensitive enzyme-free electrochemical immunoassay for free thyroxine based on three dimensionally ordered macroporous chitosan-Au nanoparticles hybrid film,” Biosens. Bioelectron., vol. 59, pp. 377–383, 2014. [161] R. I. Stefan, J. F. VanStaden, and H. Y. Aboul-Enein, “Simultaneous determination of L-thyroxine (L-T4), D-thyroxine (D-T4), and L-triiodothyronine (L-T3) using a sensors/sequential injection analysis system,” Talanta, 2004, vol. 64, no. 1, pp. 151–155. [162] J. Han, Y. Zhuo, Y. Chai, Y. Yu, N. Liao, and R. Yuan, “Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag,” Anal. Chem. Acta, vol. 790, pp. 24–30, 2013. [163] H. Martin, C. Murray, J. Christeller, and T. McGhie, “A fluorescence polarization assay to quantify biotin and biotin-binding proteins in whole plant extracts using Alexa-Fluor 594 biocytin,” Anal. Biochem., vol. 381, no. 1, pp. 107–112, 2008. [164] J. Zhao, G. Chen, W. Zhang, P. Li, L. Wang, Q. Yue, H. Wang, R. Dong, X. Yan, and J. Liu, “High-resolution separation of graphene oxide by capillary electrophoresis,” Anal. Chem., vol. 83, no. 23, pp. 9100–9106, 2011. [165] A. C. C. Rotzetter, C. M. Schumacher, S. B. Bubenhofer, R. N. Grass, L. C. Gerber, M. Zeltner, and W. J. Stark, “Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings,” Adv. Mater., vol. 24, no. 39, pp. 5352–5356, 2012. [166] D. H. W. Li, J. C. Lam, C. C. S. Lau, and T. W. Huan, “Lighting and energy performance of solar film coating in air-conditioned cellular offices,” Renew. Energy, vol. 29, no. 6, pp. 921–937, 2004. [167] R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 2. pp. 87–105, 2010. [168] D. Cupelli, F. P. Nicoletta, S. Manfredi, G. DeFilpo, and G. Chidichimo, “Electrically switchable chromogenic materials for external glazing,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 3, pp. 329–333, 2009. [169] R. Jalili, S. H. Aboutalebi, D. Esrafilzadeh, R. L. Shepherd, J. Chen, S. Aminorroaya-Yamini, K. Konstantinov, A. I. Minett, J. M. Razal, and G. G. Wallace, “Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles,” Adv. Funct. Mater., vol. 23, no. 43, pp. 5345–5354, 2013. [170] Y. Yang, X. Song, L. Yuan, M. Li, J. Liu, R. Ji, and H. Zhao, “Synthesis of PNIPAM polymer brushes on reduced graphene oxide based on click chemistry and RAFT polymerization,” J. Polym. Sci. Part A Polym. Chem., vol. 50, no. 2, pp. 329–337, 2012. [171] L. Kan, Z. Xu, and C. Gao, “General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization,” Macromolecules, vol. 44, no. 3, pp. 444–452, 2011.K. S. Novoselov, A. K.Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [172] T. Gyenes, A. Szilagyi, T. Lohonyai, M. Zrinyi “Electrically adjustable thermotropic windows based on polymer gels,” Polymer. Adv. Tech., vol. 14, no. 11, pp. 757–762, 2003. [173] Y. Wang, L. Zhang, J. Wu, M. N. Hedhili, and P. Wang, “A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting,” J. Mater. Chem. A, vol. 3, no. 37, pp. 18963–18969, 2015. [174] Y. G. Shi, M.Y. Liu, K. Wang, F.J. Deng, Q. Wan, Q. Huang, L.H. Fu, X.Y. Zhang, Y. Wei, “Bioinspired preparation of thermo-responsive graphene oxide nanocomposites in an aqueous solution,” Polym. Chem., vol. 6, pp. 5876–5883, 2015. [175] N. Graf , E. Yegen, T. Gross, A. Lippitz, W. Weigel, S. Krakert, A. Terfort, and W. E. S. Unger, “XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces,” Surf. Sci., vol. 603, pp. 2849–2860, 2009. [176] H. Zhu, Z. Guo, and W. Liu, “Biomimetic water-collecting materials inspired by nature,” Chem. Commun., vol. 52, no. 20, pp. 3863–3879, 2016. [177] B. Bhushan and Y. C. Jung, “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction,” Prog. Mater. Sci., vol. 56, no. 1, pp. 1–108, 2011. [178] H. Zeng, N. Pesika, Y. Tian, B. Zhao, Y. Chen, M. Tirrell, K. L. Turner, and J. N.Israelachvili, “Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems,” Langmuir, vol. 25, no. 13, pp. 7486–7495, 2009. [179] L. Zhang, J. Wu, M. N. Hedhili, X. Yang, and P. Wang, “Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces,” J. Mater. Chem. A, vol. 3, no. 6, pp. 2844–2852, 2015. [180] P. F. Li, X. J. Ju, L. Y. Chu, and R. Xie, “Thermo-responsive membranes with cross-linked poly(N-isopropylacrylamide) hydrogels inside porous substrates,” Chem. Eng. Technol., vol. 29, no. 11, pp. 1333–1339, 2006.
|