|
[1] R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press, 2008. [2] R.F. Decker, The evolution of wrought age-hardenable superalloys, JOM, 58 (2006) 32-36. [3] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-Base High-Temperature Alloys, Science, 312 (2006) 90-91. [4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6 (2004) 299-303. [5] R. Sakidja, J. Myers, S. Kim, J. Perepezko, The effect of refractory metal substitution on the stability of Mo (ss)+ T2 two-phase field in the Mo–Si–B system, International Journal of Refractory Metals and Hard Materials, 18 (2000) 193-204. [6] N. Sekido, Y. Kimura, S. Miura, F.-G. Wei, Y. Mishima, Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys, Journal of Alloys and Compounds, 425 (2006) 223-229. [7] W. Liu, Y. Fu, J. Sha, Microstructure and mechanical properties of Nb–Si alloys fabricated by spark plasma sintering, Progress in Natural Science: Materials International, 23 (2013) 55-63. [8] C. Liang, H. Gong, Thermodynamic properties and lattice misfit of Ir-based superalloys, Intermetallics, 32 (2013) 429-436. [9] Z. Sun, C. Wang, X. Niu, Y. Song, A response surface approach for reliability analysis of 2.5 DC/SiC composites turbine blade, Composites Part B: Engineering, 85 (2016) 277-285. [10] M. Vittori, A. Mignone, On the antiphase boundary energy of Ni3 (Al, Ti) particles, Materials Science and Engineering, 74 (1985) 29-37. [11] B. Reppich, Some new aspects concerning particle hardening mechanisms in γ'precipitating Ni-base alloys—I. Theoretical concept, Acta Metallurgica, 30 (1982) 87-94. [12] M.J. Donachie, S.J. Donachie, Superalloys: a technical guide, ASM international, 2002. [13] W. Huther, B. Reppich, Interaction of dislocations with coherent, stree-free ordered particles, Zeitschrift fur Metallkunde, 69 (1978) 628-634. [14] E.C. Caldwell, F.J. Fela, G.E. Fuchs, The segregation of elements in high-refractory-content single-crystal nickel-based superalloys, JOM, 56 (2004) 44-48. [15] A. Jena, M. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys, Journal of Materials Science, 19 (1984) 3121-3139. [16] A. Heckl, S. Neumeier, M. Göken, R.F. Singer, The effect of Re and Ru on γ/γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys, Materials Science and Engineering: A, 528 (2011) 3435-3444. [17] R. Hobbs, S. Tin, C. Rae, R. Broomfield, C. Humphreys, Solidification characteristics of advanced nickel-base single crystal superalloys, Superalloys 2004, (2004) 819-825. [18] G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.F. Hammetter, INCONEL 718: A solidification diagram, Metallurgical Transactions A, 20 (1989) 2149-2158. [19] A.C. Yeh, S. Tin, Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys, Metallurgical and Materials Transactions A, 37 (2006) 2621-2631. [20] A.C. Yeh, S. Tin, Solidification and phase stability of Ru-bearing Ni-base superalloys, PARSONS 2003: Sixth International Charles Parsons Turbine Conference, 2003, pp. 673-686. [21] J.W. Yeh, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat, 31 (2006) 633-648. [22] M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123. [23] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897. [24] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345 (2014) 1153-1158. [25] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375-377 (2004) 213-218. [26] H.-P. Chou, Y.-S. Chang, S.-K. Chen, J.-W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Materials Science and Engineering: B, 163 (2009) 184-189. [27] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Journal of Alloys and Compounds, 488 (2009) 57-64. [28] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51. [29] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 881-893. [30] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Materialia, 62 (2014) 105-113. [31] F.J. Wang, Y. Zhang, G.L. Chen, Atomic packing efficiency and phase transition in a high entropy alloy, Journal of Alloys and Compounds, 478 (2009) 321-324. [32] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys, Springer, 2016. [33] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Advanced Engineering Materials, 10 (2008) 534-538. [34] M. Kaufman, Properties of cast mar-m-247 for turbine blisk applications, Superalloys 1984, (1984) 43-52. [35] Q.Z. Chen, N. Jones, D.M. Knowles, The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures, Acta Materialia, 50 (2002) 1095-1112. [36] A. Manzoni, H. Daoud, S. Mondal, S. van Smaalen, R. Völkl, U. Glatzel, N. Wanderka, Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc, Journal of Alloys and Compounds, 552 (2013) 430-436. [37] C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics, 31 (2012) 165-172. [38] H.M. Daoud, A. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy, JOM, 65 (2013) 1805-1814. [39] J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26 (2002) 273-312. [40] D. Miracle, O. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511. [41] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15 (2007) 357-362. [42] Y. Zhou, Y. Zhang, Y. Wang, G. Chen, Solid solution alloys of Al Co Cr Fe Ni Ti x with excellent room-temperature mechanical properties, Applied physics letters, 90 (2007) 181904. [43] Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosion Science, 52 (2010) 2571-2581. [44] M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, Y.-S. Huang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy, Metallurgical and Materials Transactions A, 37 (2006) 1363-1369. [45] C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, H.-C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Materials Letters, 61 (2007) 1-5. [46] S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Materialia, 59 (2011) 182-190. [47] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang, Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 1263-1271. [48] G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, Journal of Alloys and Compounds, 591 (2014) 11-21. [49] C. Lee, C. Chang, Y. Chen, J. Yeh, H. Shih, Effect of the aluminium content of AlxCrFe1. 5MnNi0. 5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corrosion Science, 50 (2008) 2053-2060. [50] W.Y. Tang, M.H. Chuang, H.Y. Chen, J.W. Yeh, Microstructure and Mechanical Performance of Brand‐New Al0. 3CrFe1. 5MnNi0. 5 High‐Entropy Alloys, Advanced Engineering Materials, 11 (2009) 788-794. [51] M.-H. Chuang, M.-H. Tsai, C.-W. Tsai, N.-H. Yang, S.-Y. Chang, J.-W. Yeh, S.-K. Chen, S.-J. Lin, Intrinsic surface hardening and precipitation kinetics of Al0. 3CrFe1. 5MnNi0. 5 multi-component alloy, Journal of Alloys and Compounds, 551 (2013) 12-18. [52] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0. 5Ni High‐Entropy Alloys, Advanced Engineering Materials, 12 (2010) 44-49. [53] Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen, Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties, Materials Letters, 62 (2008) 2673-2676. [54] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755. [55] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Materialia, 81 (2014) 428-441. [56] G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Materialia, 118 (2016) 152-163. [57] H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, P. Jacques, Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe–Mn-based austenitic steels?, Scripta Materialia, 60 (2009) 941-944. [58] H. Idrissi, K. Renard, D. Schryvers, P. Jacques, On the relationship between the twin internal structure and the work-hardening rate of TWIP steels, Scripta Materialia, 63 (2010) 961-964. [59] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Materialia, 94 (2015) 124-133. [60] http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf, Special Metals Company. [61] Q. Wang, Y. Ma, B. Jiang, X. Li, Y. Shi, C. Dong, P.K. Liaw, A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al 0.7 CoCrFe 2 Ni with prominent tensile properties, Scripta Materialia, 120 (2016) 85-89. [62] W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60 (2015) 1-8. [63] K.-M. Chang, H.-J. Lai, J.-Y. Hwang, Existence of Laves phase in Nb-hardened superalloys, Superalloys 718, 625, 706 and various derivatives, (1994) 683-694. [64] W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Materialia, 116 (2016) 332-342. [65] H. Daoud, A. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Microstructure and tensile behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) high-entropy alloy, Jom, 65 (2013) 1805-1814. [66] H. Daoud, A. Manzoni, N. Wanderka, U. Glatzel, High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy), JOM, 67 (2015) 2271-2277. [67] J. He, H. Wang, H. Huang, X. Xu, M. Chen, Y. Wu, X. Liu, T. Nieh, K. An, Z. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Materialia, 102 (2016) 187-196. [68] Y. Zhang, S. Ma, J. Qiao, Morphology transition from dendrites to equiaxed grains for AlCoCrFeNi high-entropy alloys by copper mold casting and Bridgman solidification, Metallurgical and Materials Transactions A, 43 (2012) 2625-2630. [69] S. Ma, S. Zhang, M. Gao, P. Liaw, Y. Zhang, A successful synthesis of the CoCrFeNiAl 0.3 single-crystal, high-entropy alloy by Bridgman solidification, Jom, 65 (2013) 1751-1758. [70] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia, 59 (2011) 6308-6317. [71] M. Gungor, A statistically significant experimental technique for investigating microsegregation in cast alloys, Metallurgical Transactions A, 20 (1989) 2529-2533. [72] Sowards.18, http://en.wikipedia.org/wiki/File:Scheil_graphics.gif, http://en.wikipedia.org/wiki/File:Scheil_graphics.gif. [73] R. Hobbs, S. Tin, C. Rae, A castability model based on elemental solid-liquid partitioning in advanced nickel-base single-crystal superalloys, Metallurgical and Materials Transactions A, 36 (2005) 2761-2773. [74] V. Wills, D. McCartney, A comparative study of solidification features in nickel-base superalloys: microstructural evolution and microsegregation, Materials Science and Engineering: A, 145 (1991) 223-232. [75] G.D. Smith, S.J. Patel, in: E.A. Loria (Ed.) Superalloys 718, 625, 706 and Derivatives 2005, TMS (The Minerals, Metals & Materials Society), 2005, pp. 135-154. [76] R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, M.K. Miller, Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography, Scripta Materialia, 51 (2004) 327-331. [77] M.V. Acharya, G.E. Fuchs, The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys, Materials Science and Engineering: A, 381 (2004) 143-153. [78] T. Sugui, W. Minggang, L. Tang, Q. Benjiang, X. Jun, Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys, Materials Science and Engineering: A, 527 (2010) 5444-5451. [79] A.F. Giamei, D.L. Anton, Rhenium additions to a Ni-base superalloy: Effects on microstructure, Metallurgical Transactions A, 16 (1985) 1997-2005. [80] G.K. Bouse, ETA (η) AND PLATELET PHASES IN INVESTMENT CAST SUPERALLOYS, structure, 8 (1996) 571. [81] A.C. Yeh, Y.J. Chang, C.W. Tsai, Y.C. Wang, J.W. Yeh, C.M. Kuo, On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy, Metallurgical and Materials Transactions A, 45 (2014) 184-190. [82] W.D. Cao, Solidification and solid state phase transformation of Allvac® 718Plus™ alloy, Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives, 2005, pp. 165-177. [83] G.E. Korth, C.L. Trybus, Tensile properties and microstructure of Alloy 718 thermally aged to 50,000 h, 1991. [84] J.F. Radavich, Long Time Stability of a Wrought Alloy 718 Disk, Superalloy 718: Metallurgy and Applications, (1989) 257-268. [85] M. Jackson, R. Reed, Heat treatment of UDIMET 720Li: the effect of microstructure on properties, Materials Science and Engineering: A, 259 (1999) 85-97. [86] L.K. Singhal, Strengthening mechanisms in γ′ hardened nickel base alloys, Scripta Metallurgica, 5 (1971) 959-964. [87] H. Monajati, M. Jahazi, R. Bahrami, S. Yue, The influence of heat treatment conditions on gamma ' characteristics in Udimet (R) 720, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 373 (2004) 286-293. [88] A.C. Yeh, T.K. Tsao, Y.J. Chang, K.C. Chang, J.W. Yeh, M.S. Chiou, S.R. Jian, C.M. Kuo, W.R. Wang, H. Murakami, Developing new type of high temperature alloys – High Entropy Superalloys, submitted to IJMME, 2015. [89] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM, 65 (2013) 1780-1789. [90] M. Weis, M. Mataya, S. Thompson, D. Matlock, The hot deformation behavior of an as-cast alloy 718 ingot, Alloy 718—Metallurgy and Applications, (1989) 135-154. [91] F. Delaunay, C. Berthier, M. Lenglet, J.-M. Lameille, SEM-EDS and XPS Studies of the High Temperature Oxidation Behaviour of Inconel 718, Mikrochim Acta, 132 (2000) 337-343. [92] C.S. Giggins, F.S. Pettit, Oxidation of Ni ‐ Cr ‐ Al Alloys Between 1000° and 1200°C, Journal of The Electrochemical Society, 118 (1971) 1782-1790. [93] C.W. Tsai, M.H. Tsai, J.W. Yeh, C.C. Yang, Effect of temperature on mechanical properties of Al 0.5 CoCrCuFeNi wrought alloy, Journal of Alloys and Compounds, 490 (2010) 160-165. [94] I. Manna, S. Pabi, W. Gust, Discontinuous reactions in solids, International materials reviews, 46 (2001) 53-91. [95] P. Ziȩba, G. Cliff, G.W. Lorimer, Discontinuous precipitation in cobalt-tungsten alloys, Acta Materialia, 45 (1997) 2093-2099. [96] C.K.L. Davies, P.G. Nash, R.N. Stevens, L.C. Yap, Precipitation in Ni-Co-Al alloys, Journal of Materials Science, 20 (1985) 2945-2957. [97] R. Fournelle, Discontinuous coarsening of lamellar cellular precipitate in an austenitic Fe-30 wt% Ni-6wt.% Ti alloy—I. Morphology, Acta Metallurgica, 27 (1979) 1135-1145. [98] C.Y. Barlow, B. Ralph, Observations of cellular transformation products in nickel-base superalloys, Journal of Materials Science, 14 (1979) 2500-2508. [99] A. Porter, B. Ralph, The recrystallization of nickel-base superalloys, Journal of Materials Science, 16 (1981) 707-713. [100] R. Scarlin, Discontinuous precipitation in a directionally-solidified nickel-base alloy, Scripta Metallurgica, 10 (1976) 711-715. [101] S. Ochial, Y. Oya, T. Suzuki, Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge, Acta Metallurgica, 32 (1984) 289-298. [102] B. Kear, Dislocation configurations in plastically deformed polycrystalline Cu3Au alloys, DTIC Document, 1961. [103] J.D. Nystrom, T.M. Pollock, W.H. Murphy, A. Garg, Discontinuous cellular precipitation in a high-refractory nickel-base superalloy, Metallurgical and Materials Transactions A, 28 (1997) 2443-2452. [104] R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Polt, E. Kozeschnik, Multimodal size distributions of gamma ' precipitates during continuous cooling of UDIMET 720 Li, Acta Materialia, 57 (2009) 5739-5747. [105] A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser, R. Banerjee, Influence of cooling rate on the development of multiple generations of gamma ' precipitates in a commercial nickel base superalloy, Mater. Charact., 62 (2011) 878-886. [106] S. Xu, J.I. Dickson, A.K. Koul, Grain growth and carbide precipitation in superalloy, UDIMET 520, Metallurgical and Materials Transactions A, 29 (1998) 2687-2695. [107] R.N. Jarrett, J.K. Tien, Effects of Cobalt on Structure, Microchemistry and Properties of a Wrought Nickel-Base Superalloy, Metallurgical Transactions A, 13 (1982) 1021-1032. [108] INCOLOY alloy 925, http://www.specialmetalswiggin.co.uk/products/incoloy-alloy-925, Special Metals company. [109] Inconel alloy 617, http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-617.pdf, Special Metals company. [110] HAYNES® Waspaloy alloy, http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/waspaloy.pdf?sfvrsn=8, Haynes International company. [111] https://www.metalbulletin.com/Article/3586680/Chromium-prices-tighten-as-ore-costs-rise.html. [112] https://www.metalary.com/.
|