|
Amorim, L. D. and Cai, J. (2015). Modelling recurrent events: a tutorial for analysis in epidemiology. International journal of epidemiology 44, 324–333. Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a large sample study. The Annals of Statistics 10, 1100–1120. Armstrong, B. (1985). Measurement error in the generalised linear model. Communications in Statistics-Simulation and Computation 14, 529–544. Balakrishnan, N. and Peng, Y. (2006). Generalized gamma frailty model. Statistics in Medicine 25, 2797–2816. Buonaccorsi, J. (2010). Measurement error: models, methods, and applications. Chapman and Hall/CRC, New York. Buzas, J. S. (1997). Instrumental variable estimation in nonlinear measurement error models. Communications in Statistics-Theory and Methods 26, 2861–2877. Buzas, J. S. (1998). Unbiased scores in proportional hazards regression with covariate measurement error. Journal of Statistical Planning and Inference 67, 247–257. Cai, J. and Schaubel, D. E. (2004). Marginal means/rates models for multiple type recurrent event data. Lifetime data analysis 10, 121–138. Carroll, R. J., Kuchenhoff, H., Lombard, F., and Stefanski, L. A. (1996). Asymptotics for the simex estimator in nonlinear measurement error models. Journal of the American Statistical Association 91, 242–250. Carroll, R. J., Ruppert, D., Crainiceanu, C. M., Tosteson, T. D., and Karagas, M. R. (2012). Nonlinear and nonparametric regression and instrumental variables. Journal of the American Statistical Association 99, 736–750. Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measurement error in nonlinear models: a modern perspective. Chapman & Hall, London. Carroll, R. J., Spiegelman, C. H., Lan, K. K., Bailey, K. T., and Abbott, R. D. (1984). On errors-in-variables for binary regression models. Biometrika 71, 19–25. Chen, C. M., Chuang, Y. W., and Shen, P. S. (2015). Two-stage estimation for multivariate recurrent event data with a dependent terminal event. Biometrical Journal 57, 215–233. Clark, L. C., Combs, G. F., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., Davis, L. S., Glover, R. A., Graham, G. F., Gross, E. G., et al. (1996). Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. Journal of the American Medical Association 276, 1957–1963. Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models. Journal of the American Statistical association 89, 1314–1328. Cook, R. J. and Lawless, J. F. (2007). The statistical analysis of recurrent events. Springer, New York. Cook, R. J., Lawless, J. F., Lakhal-Chaieb, L., and Lee, K. A. (2009). Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. Journal of the American Statistical Association 104, 60–75. Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society Series B 34, 187–220. Duchateau, L., Janssen, P., Kezic, I., and Fortpied, C. (2003). Evolution of recurrent asthma event rate over time in frailty models. Journal of the Royal Statistical Society Series C 52, 355–363. Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. John Wiley & Sons, New York. Foutz, R. V. (1977). On the unique consistent solution to the likelihood equations. Journal of the American Statistical Association 72, 147–148. Fuller, W. A. (1987). Measurement error models. John Wiley & Sons, New York. Ghosh, D. and Lin, D. Y. (2000). Nonparametric analysis of recurrent events and death. Biometrics 56, 554–562. Ghosh, D. and Lin, D. Y. (2002). Marginal regression models for recurrent and terminal events. Statistica Sinica 12, 663–688. Gorfine, M., Hsu, L., and Prentice, R. L. (2004). Nonparametric correction for covariate measurement error in a stratified Cox model. Biostatistics 5, 75–87. Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association 47, 663–685. Hu, C. and Lin, D. Y. (2002). Cox regression with covariate measurement error. Scandinavian Journal of Statistics 29, 637–655. Hu, C. and Lin, D. Y. (2004). Semiparametric failure time regression with replicates of mismeasured covariates. Journal of the American Statistical Association 99, 105–118. Hu, P., Tsiatis, A. A., and Davidian, M. (1998). Estimating the parameters in the Cox model when covariate variables are measured with error. Biometrics 54, 1407–1419. Huang, C. Y., Qin, J., and Wang, M. C. (2010). Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring. Biometrics 66, 39–49. Huang, C. Y. and Wang, M. C. (2004). Joint modeling and estimation for recurrent event processes and failure time data. Journal of the American Statistical Association 99, 1153–1165. Huang, Y. and Wang, C. Y. (2000). Cox regression with accurate covariates unascertainable: a nonparametric-correction approach. Journal of the American Statistical Association 95, 1209–1219. Huang, Y. and Wang, C. Y. (2001). Consistent functional methods for logistic regression with errors in covariates. Journal of the American Statistical Association 96, 1469–1482. Huang, Y. and Wang, C. Y. (2006). Errors-in-covariates effect on estimating functions: Additivity in limit and nonparametric correction. Statistica Sinica 96, 861–881. Huber, P. J. (2009). Robust statistics. John Wiley & Sons, New Jersey. Hughes, M. D. (1993). Regression dilution in the proportional hazards model. Biometrics 49, 1056–1066. Jiang, W., Turnbull, B. W., and Clark, L. C. (1999). Semiparametric regression models for repeated events with random effects and measurement error. Journal of the American Statistical Association 94, 111–124. Kalbfleisch, J. D., Schaubel, D. E., Ye, Y., and Gong, Q. (2013). An estimating function approach to the analysis of recurrent and terminal events. Biometrics 69, 366–374. Lancaster, T. and Intrator, O. (1998). Panel data with survival: hospitalization of hiv-positive patients. Journal of the American Statistical Association 93, 46–53. Lawless, J. F., Hu, J., and Cao, J. (1995). Methods for the estimation of failure distributions and rates from automobile warranty data. Lifetime Data Analysis 1, 227–240. Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics 37, 158–168. Liao, X., Zucker, D. M., Li, Y., and Spiegelman, D. (2011). Survival analysis with error-prone time-varying covariates: A risk set calibration approach. Biometrics 67, 50–58. Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society Series B 62, 711–730. Liu, L. and Huang, X. (2008). The use of gaussian quadrature for estimation in frailty proportional hazards models. Statistics in medicine 27, 2665–2683. Liu, L., Wolfe, R. A., and Huang, X. (2004). Shared frailty models for recurrent events and a terminal event. Biometrics 60, 747–756. Mazroui, Y., Mathoulin-Pelissier, S., Soubeyran, P., and Rondeau, V. (2012). General joint frailty model for recurrent event data with a dependent terminal event: application to follicular lymphoma data. Statistics in medicine 31, 1162–1176. Morgan, W. J., Butler, S. M., Johnson, C. A., Colin, A. A., FitzSimmons, S. C., Geller, D. E., Konstan, M. W., Light, M. J., Rabin, H. R., Regelmann, W. E., et al. (1999). Epidemiologic study of cystic fibrosis: design and implementation of a prospective, multicenter, observational study of patients with cystic fibrosis in the us and canada. Pediatric Pulmonology 28, 231–241. Nakamura, T. (1990). Corrected score function for errors-in-variables models: Methodology and application to generalized linear models. Biometrika 77, 127–137. Nakamura, T. (1992). Proportional hazards model with covariates subject to measurement error. Biometrics 48, 829–838. Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook of econometrics 4, 2111–2245. Ng, E. T. M. and Cook, R. J. (1999). Robust inference for bivariate point processes. The Canadian Journal of Statistics 27, 509–524. Nielsen, G. G., Gill, R. D., Andersen, P. K., and Sørensen, T. I. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics 19, 25–43. Ning, J., Rahbar, M. H., Choi, S., Piao, J., Hong, C., del Junco, D. J., Rahbar, E., Fox, E. E., Holcomb, J. B., and Wang, M. C. (2015). Estimating the ratio of multivariate recurrent event rates with application to a blood transfusion study. Statistical methods in medical research. In Press. Pepe, M. S. and Cai, J. (1993). Some graphical displays and marginal regression analyses for recurrent failure times and time dependent covariates. Journal of the American Statistical Association 88, 811–820. Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69, 331–342. Prentice, R. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika 68, 373–379. Rosner, B., Willett, W. C., and Spiegelman, D. (1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Statistics in medicine 8, 1051–1069. Schafer, D. W. and Purdy, K. G. (1996). Likelihood analysis for errors-invariables regression with replicate measurements. Biometrika 83, 813–824. Schaubel, D., Johansen, H., Dutta, M., Desmeules, M., Becker, A., and Mao, Y. (1996). Neonatal characteristics as risk factors for preschool asthma. Journal of Asthma 33, 255–264. Song, X., Davidian, M., and Tsiatis, A. A. (2002a). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3, 511–528. Song, X., Davidian, M., and Tsiatis, A. A. (2002b). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742–753. Song, X. and Huang, Y. (2005). On corrected score approach for proportional hazards model with covariate measurement error. Biometrics 61, 702–714. Song, X. and Wang, C. Y. (2014). Proportional hazards model with covariate measurement error and instrumental variables. Journal of the American Statistical Association 109, 1636–1646. Stefanski, L. A. (1985). The effects of measurement error on parameter estimation. Biometrika 72, 583–592.
Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores for generalized linear measurement- error models. Biometrika 74, 703–716. Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics 46, 657–671. Therneau, T. M. and Hamilton, S. A. (1997). rhDNase as an example of recurrent event analysis. Statistics in medicine 16, 2029–2047. Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447–458. Turnbull, B. W., Jiang, W., and Clark, L. C. (1997). Regression models for recurrent event data: parametric random effects models with measurement error. Statistics in Medicine 16, 853–864. Wang, C. Y., Cullings, H., Song, X., and Kopecky, K. J. (2017). Joint nonparametric correction estimator for excess relative risk regression in survival analysis with exposure measurement error. Journal of the Royal Statistical Society Series B. In Press. Wang, C. Y., Hsu, L., Feng, Z. D., and Prentice, R. L. (1997). Regression calibration in failure time regression. Biometrics 53, 131–145. Wang, C. Y. and Sullivan Pepe, M. (2000). Expected estimating equations to accommodate covariate measurement error. Journal of the Royal Statistical Society Series B 62, 509–524. Wang, C. Y. and Wang, S. (1997). Semiparametric methods in logistic regression with measurement error. Statistica Sinica 7, 1103–1120. Wang, M. C., Qin, J., and Chiang, C. T. (2001). Analyzing recurrent event data with informative censoring. Journal of the American Statistical Association 96, 1057–1065. Xu, G., Chiou, S. H., Huang, C. Y., Wang, M. C., and Yan, J. (2016). Joint scale-change models for recurrent events and failure time. Journal of the American Statistical Association. In Press. Ye, Y., Kalbfleisch, J. D., and Schaubel, D. E. (2007). Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63, 78–87. Yi, G. Y. and Lawless, J. F. (2012). Likelihood-based and marginal inference methods for recurrent event data with covariate measurement error. Canadian Journal of Statistics 10, 530–549. Zeng, D., Ibrahim, J. G., Chen, M. H., Hu, K., and Jia, C. (2014). Multivariate recurrent events in the presence of multivariate informative censoring with applications to bleeding and transfusion events in myelodysplastic syndrome. Journal of biopharmaceutical statistics 24, 429–442. Zhao, H. and Lin, J. (2012). The large sample properties of the solutions of general estimating equations. Journal of Systems Science and Complexity 25, 315–328. Zhu, L., Sun, J., Srivastava, D. K., Tong, X., Leisenring, W., Zhang, H., and Robison, L. L. (2011). Semiparametric transformation models for joint analysis of multivariate recurrent and terminal events. Statistics in medicine 30, 3010–3023. Zhu, L., Sun, J., Tong, X., and Srivastava, D. K. (2010). Regression analysis of multivariate recurrent event data with a dependent terminal event. Lifetime data analysis 16, 478–490.
|