|
1. Werz, D. B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C.-W.; Seeberger, P. H. Exploring the Structural diversity of mammalian carbohydrates (″Glycospace″) by statistical databank analysis. ACS Chem. Biol. 2007, 2, 685−691. 2. Laine, R. A. Invited Commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: The isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 1994, 4, 759−767. 3. Nicotra, F.; Airoldi,C.; Cardona, F. Synthesis of C- and S- glycosides. Comprehensive Glycoscience. 2007, 1, 647-683. 4. a) Ernst, B.; Magnani, J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev.Drug. Discovery 2009, 8, 661−677. b) Wu, C.-Y.; Wong, C.-H. Chemistry and glycobiology. Chem.Commun. 2011, 47, 6201− 6207. 5. Du, Y.; Linhardt, R. J.; Vlahov, I. R. Recent advances in stereo selective C-glycoside synthesis. Tetrahedron 1998, 54, 9913−9959. 6. Levy, D. E. Strategies towards C-glycosides. In the organic chemistry of sugars; Levy, D. E., Fügedi, P., Eds.; CRC Taylor & Francis: Boca Raton, FL, 2006; pp. 269−348. 7. Levy, D. E.; Tang, C. The chemistry of C-glycosides; Pergamon Press: Oxford, 1995. 8. Postema, M. H. D. C-Glycoside synthesis; CRC Press: Boca Raton, FL, 1995. 9. Bertozzi, C. R.; Bednarski, M. D. Synthesis of C-glycosides; stable mimics of O- glycosidic linkages. In modern methods in carbohydrate synthesis; Khan, S. H., O’Neill, R. A., Eds.; Harwood academic publishers: UK, 1996; pp. 316−351. 10. Nishikawa, T.; Adachi, M.; Isobe, M. C-Glycosylation. In glycoscience-chemistry and chemical biology; Fraser-Reid, B. O.,Tatsuta, K., Thiem, J., Eds.; Springer: New York, 2008; pp. 755−811. 11. Vauzeilles, B.; Urban, D.; Doisneau, G.; Beau, J.-M. C-Glycosyl analogs of oligosaccharides. In Glycoscience-chemistry and chemical biology; Fraser-Reid, B. O.,Tatsuta, K., Thiem, J., Eds.; Springer: New York, 2008; pp. 2023−2077. 12. Beau, J.-M.; Gallagher, T. Nucleophilic C-glycosyl donors for C-glycoside synthesis. Top. Curr. Chem. 1997, 187, 1−54. 13. Togo, H.; He, W.; Waki, Y.; Yokoyama, M. C-Glycosidation technology with free radical reactions. Synlett 1998, 700−717. 14. Zou, W. C-glycosides and Aza-C- glycosides as potential glycosidase and glycosyl transferase inhibitors. Curr. Top. Med. Chem. 2005, 5, 1363−1391. 15. Dos Santos, R. G.; Jesus, A. R.; Caio, J. M.; Rauter, A. P. Fries-type reactions for the C-glycosylation of phenols. Curr. Org. Chem. 2011, 15, 128−148. 16. Merino, P.; Tejero, T.; Marca, E.; Gomollón-Bel, F.; Delso, I.; Matutec, R. Cross-coupling reactions for the synthesis of C-glycosides and related compounds. Heterocycles 2012, 86, 791−820. 17. Yue, S.; Tang, Y.; Li, S.; Duan, J.-A. Chemical and biological properties of Quinochalcone C-glycosides from the florets of Carthamus Tinctorius. Molecules 2013, 18, 15220−15254. 18. Leclerc, E.; Pannecoucke, X.; Etheve-Quelquejeu, M.; Sollogoub, M. Fluoro-C-glycosides and fluoro-carbasugars, hydrolytically stable and synthetically challenging glycomimetics. Chem. Soc. Rev. 2013, 42, 4270−4283. 19. Lalitha, K.; Muthusamy, K.; Prasad, Y. S.; Vemula, P. K.; Nagarajan, S. Recent Developments in β-C-Glycosides: Synthesis and applications. Carbohydr. Res. 2015, 402, 158−171. 20. Brazier-Hicks, M.; Evans, K. M.; Gershater, M. C.; Puschmann, H.; Steel, P. G.; Edwards, R. The C-Glycosylation of flavonoids in cereals. J. Biol. Chem. 2009, 284, 17926-17934. 21. Furata, T,: Kimura, T.; Kondo, S.; Mihara, H.; Wakimoto, T.; Nukaya, H.; Tsuji, K.; Tanaka, K. Concise total synthesis of flavones C-glycosides having potential anti-Inflammatory activity. Tetrahedron. 2004, 60, 9375-9379. 22. Gaspar, A.; Matos, M.-J.; Garrido.; J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014, 114, 4960-4992. 23. Malik.; E.-M.; Muller, C.-E. Anthraquinones as pharmacological tools and drugs. Medicinal Research Reviews. 2016, 36, 705-748. 24. Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Synthesis of the Pluramycins 1: Two designed anthrones as enabling platforms for flexible Bis-C- glycosylation, Angew. Chem. Int. Ed. 2014, 53, 1258-1261. 25. Schmidt, R.-R.; Effenberger, G. C-glucosylarenes from O-α-D-glucosyl trichloro acetimidates: Structure of Berginin derivatives. Carbohydr. Res. 1987, 171, 59-79. 26. a) Omura, S.; Tanaka, H.; Oiwa, R.; Awaya, J.; Masuma, R.; Tanak, K. J. Antibiot. 1977, 30, 908-916. b) Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Omura, S. J. Antibiot. 1981, 34, 1517-1518. c) Kusumi, S.; Tomono, S.; Okuzawa, S.; Kaneko, E.; Ueda, T.; Sasaki, K.; Takahashi, D.; Toshima, K. Total synthesis of Vineomycin B 2 . J. Am. Chem. Soc. 2013, 135, 15909-15912. 27. Denmark, S.-E.; Regens, C.-S.; Kobayashi, T. Total synthesis of Papulacandin D. J. Am. Chem. Soc. 2007, 129, 2774-2776. 28. Lee, D. Y. W.; He, M. Recent advances in aryl C-glycoside synthesis. Curr. Top. Med. Chem. 2005, 5, 1333−1350. 29. a) Schmidt, R.-R.; Hoffmann, M. C-glycosides from O-glycosyl trichloro acetimidates. Tetrahedron Lett. 1982, 23, 409-412; b) Schmidt, R.-R.; Frick, W.; Haag-Zeino, B.; Apparao, S. C-Aryl glycosides and 3-deoxy- 2-glyculosonates via inverse type hetero Diels-Alder reaction. Tetrahedron Lett. 1987, 28, 4045-4048. 30. Cai, M.-S.; Qiu, D.-X. Stereoselective and mild method for the synthesis of C-D-glucosylarenes in high yield. Carbohydr. Res. 1989, 191, 125-129. 31. Kuribayashi, T.; Ohkawa, N.; Satoh, S. AgOTfa/SnCl4:A powerful new promoter combination in the aryl C-glycosidation of a diverse range of sugars acetates and aromatic substrates. Tetrahedron. Lett. 1998, 39, 4537-4540. 32. Praly, J.-P.; He, L.; Qin, B.-B.; Tanoh, M.; Chen, G.-R. C-glycopyranosyl- 1,4-benzoquinones and hydroquinones opening access to C-glycosylated analogs of vitamin E. Tetrahedron Lett. 2005, 46, 7081–7085; b) He, L.; Zhang, Y.-Z.; Tanoh, M.; Chen, G.-R.; Praly, J.-P.; Chrysina, E.-D.; Tiraidis, C.; Kosmopoulou, M.; Leonidas, D.-D.; Oikonomakos, N.-G. In the Search of Glycogen Phosphorylase Inhibitors: Synthesis of C-D-Glycopyranosylbenzo (hydro)quinones –Inhibition of and Binding to Glycogen Phosphorylase in the Crystal. Eur. J. Org. Chem. 2007, 4, 596–606. 33. a) Ben, A.; Yamauchi, T.; Matsumoto, T.; Suzuki, K. Sc(OTf)3 as efficient catalyst for Aryl C-glycoside synthesis. Synlett. 2004, 225-230; b) Yamauchi, T.; Watanabe, Y.; Suzuki, K.; Matsumoto, T. Bis-C-glycosylation of resorcinol derivatives by an O→C-glycoside rearrangement. Synlett. 2006, 399-402; c) Ho, T.-C.; Kamimura, H.; Ohmori, K.; Suzuki, K. Total synthesis of (+)-Vicenin- 2. Org. Lett. 2016, 18, 4488-4490. 34. Matsumoto, T., Katsuki, M., Suzuki, K. New approach to C-aryl glycosides starting from phenol and glycosyl fluoride. Lewis acid-catalyzed rearrangement of O-glycoside to C-glycoside. Tetrahedron Lett. 1988, 29, 6935-6938. 35. El Telbani, E.; El Desoly, S.; Hammad, M.; Rahman, A.; Schmidt, R.-R. C-Glycosides of visnagin analogues. Eur. J. Org. Chem. 1998, 11, 2317-2322. 36. Sato, S.; Koide, T. Synthesis of vicenin-1 and 3, 6,8- and 8,6-di-C-β-D-(glucopyranosyl-xylopyranosyl)-4’,5,7- trihydroxyflavones using two direct C-glycosylations of naringenin and phloroacetophenone with unprotected D-glucose and D-xylose in aqueous solution as the key reactions. Carbohydr. Res. 2010, 345, 1825-1830. 37. a) Czernecki, S.; Ville, G. Stereospecific C-Glycosylation of Aromatic and Heterocyclic Rings, J. Org. Chem. 1989, 54, 610-612; b) Ellsworth, B.-A.; Doyle, A.-G.; Patel, M.; Caceres-cortes, J.; Meng, W.; Deshpande, P.-P.; Pullockran, A.; Washburn, W.-N. C-Arylglucoside synthesis: Triisopropylsilane as a selective reagent for the reduction of an anomeric C-phenyl ketal. Tetrahedron: Assymmetry 2003, 14, 3243-3247. 38. Gong, H.; Gagne, M.-R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated fully oxygenated C-Alkyl and C-Arylglycosides. J. Am. Chem. Soc. 2008, 130, 12177-12183. 39. Lemaire, S.; Houpis, I.-N.; Xiao, T.; Li, J.; Digard, E.; Gozlan, C.; Liu, R.; Gavryushin, A.; Diene, C.; Wang, Y.; Farina, V.; Knochel, P. Stereoselective C-glycosylation reactions with arylzinc reagents. Org. Lett. 2012, 14, 1480-1483. 40. Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. Highly stereospecific cross-coupling reactions of anomeric stannanes for the synthesis of C-Aryl glycosides. J. Am. Chem. Soc. 2016, 138, 12049-12052. 41. IDF Diabetes atlas, 7th edition, for latest information please see website at http://www.idf.org/diabetesatlas. 42. Facchini, F. S.; Hua, N.; Abbasi, F.; Reaven, G. M. Insulin resistance as a predictor of age-related diseases. J. Clin. Endocrinol. Metab. 2001, 86, 3574−3578. 43. a) Stumvoll, M.; Goldstein, B. J.; Van Haeften, T. W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333−1346. b) Edelman, S. V. Type II diabetes Mellitus. Adv. Intern. Med. 1998, 43, 449-500. 44. Henry, R. R. Glucose control and insulin resistance in noninsulin-dependent diabetes mellitus. Ann. Intern. Med. 1996, 124, 97-103. 45. Anderson, S. L. Dapagliflozin Efficacy and Safety: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 242−254. 46. Rossetti, L.; Smith, D.; Shulman, G. I.; Papachristou, D.; DeFronzo, R. A. Correction of Hyperglycemia with Phlorizin Normalizes Tissue Sensitivity to Insulin in Diabetic Rats. J. Clin. Invest. 1987, 79, 1510−1515. 47. Oku, A.; Ueta, K.; Arakawa, K.; Ishihara, T.; Nawano, M.; Kuronuma, Y.; Matsumoto, M.; Saito, A.; Tsujihara, K.; Anai, M.; Asano, T.; Kanai, Y.; Endou, H. T-1095, an Inhibitor of Renal Na+ Glucose Cotransporters, May Provide a Novel Approach to Treating Diabetes. Diabetes 1999, 48, 1794−1800. 48. Kamakura, R.; Son, M. J.; de Beer, D.; Joubert, E.; Miura, Y.; Yagasaki, K. Antidiabetic Effect of Green Rooibos (Aspalathus linearis) Extract in Cultured Cells and Type 2 Diabetic Model KK-Ay Mice. Cytotechnology 2015, 67, 699−710. 49. a) Ku, S.-K.; Kwak, S.; Kim, Y.; Bae, J.-S. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) Inhibits High Glucose-Induced Inflammation In Vitro and In Vivo. Inflammation 2015, 38,445−455. b) Jesus, A. R.; Vila-vicosa, D.; machuqueiro, M.; Marques, A. P. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones asSelective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation. J. Med. Chem. 2017, 60, 568-579. 50. a) Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N.; Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.; Zahler, R.; Deshpande, P. P.; Pullockaran, A.; Hagan, D. L.; Morgan, N.; Taylor, J. R.; Obermeier, M. T.; Humphreys, W. G.; Khanna, A.; Discenza, L.; Robertson, J. G.; Wang, A.; Han, S.; Wetterau, J. R.; Janovitz, E. B.; Flint, O. P.; Whaley, J. M.; Washburn, W. N. Discovery of Dapagliflozin: a Potent, Selective Renal Sodium-dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 2008, 51, 1145−1149. (b) List, J. F.; Woo, V.; Morales, E.; Tang, W.; Fiedorek, F. T. Sodium-glucose cotransport Inhibition with Dapagliflozin in Type 2 Diabetes. Diabetes Care 2009, 32, 650−657. 51. a) Nomura, S.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.; Kimata, H.; Nakayama, K.; Tsuda-Tsukimoto, M. Discovery of Canagliflozin, a Novel C-Glucoside with Thiophene Ring, as Sodium-Dependent Glucose Cotransporter 2 Inhibitor for the Treatment of Type 2 Diabetes Mellitus. J. Med. Chem. 2010, 53, 6355−6360. b) Meininger, G.; Canovatchel, W.; Polidori, D.; Rosenthal, N. Canagliflozin for the Treatment of Adults with Type 2 Diabetes. Diabetes Manage. 2015, 5, 183−201. 52. a) Karla, S. Sodium Glucose Co-Transporter- 2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014, 5, 355-366. b) Fujita, Y.; Inagaki, N. Renal Sodium Glucose Cotransporter 2 Inhibitors as a Novel Therapeutic Approach to Treatment of Type 2 Diabetes: Clinical Data and Mechanism of Action. J. Diabetes Invest. 2014, 5, 265−275. 53. Anderson, S. L. Dapagliflozin Efficacy and Safety: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 242−254. 54. Goodwin, N. C.; Ding, Z.-M.; Harrison, B. A.; Strobel, E. D.; Harris, A. L.; Smith, M.; Thompson, A. Y.; Xiong, W.; Mseeh, F.; Bruce, D. J.; Diaz, D.; Gopinathan, S.; Li, L.; O’Neill, F.; Thiel, M.; Wilson, A. G. E.; Carson, K. G.; Powell, D. R.; Rawling, D. B. Discovery of LX2761, a Sodium-Dependent Glucose Cotransporter 1 (SGLT1) Inhibitor Restricted to the Intestinal Lumen, for the Treatment of Diabetes. J. Med. Chem. 2017, 60, 710-721. 55. Ahuja, I.; Kissen, R.; Bones, A. M. Phytoalexins in defense against pathogens. Trends in Plant. Sci. 2012, 17, 73-90. 56. Romero-Perez, A. I.; Lamuela-Raventos, R. M.; Andres-Lacueva, C.; De la Torre-Boronat, M. C. Method for the Quantitative Extraction of Resveratrol and Piceid Isomers in Grape Berry Skins. Effect of Powdery Mildew on the Stilbene Content. J. Agr. Food Chem. 2001, 49, 210-215. 57. Baur, J. A.; Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. 2006, 5, 493-506. 58. a) Xu, L.; Liu, C.; Xiang, W.; Chen, H., Qin, X.; Huang, X. Advances in the study of Oxyresveratrol. Int. J. Pharmacol., 2014, 10, 44-54; b) Hung, L. M.; Chen, J. K.; Lee, R. S.; Liang, H. C.; Su, M. J. Benificial effects of Astringin, a resveratrol analogue, on the ischemia and reperfusion damage in rat heart. Freeradical Biology and Medicine. 2001, 30, 877-883. 59. Xiao, J.; Hogger, P. Stability of dietary polyphenols under the cell culture conditions: Avoiding erroneous conclusions. J. Agr. Food Chem. 2015, 63, 1547-1557. 60. a) K. Iguchi, T. Toyoma, T. Ito, T. Shakui, S. Usui, M. Oyama, M. Iinuma, K. Hirano, Anti androgentic activity of resveratrol analogues in prostate cancer LNCaP cells. J. Androl. 2012, 33, 1208-1215; b) Kapetanovic, I. M.; Muzzio, M.; Huang, Z.; Thompson, T. N.; McCormick, D. L.Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its Dimethylether analog, pterostilbene, in rats. Cancer. Chemother. Pharmacol. 2011, 68, 593-601; c) Paul, S.; Mizuno, C. S.; Lee, H. J.; Zheng, X.; Chajkowisk, S.; Rimoldi, J. M.; Conney, A.; Suh, N.; Rimando, A. M. In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. Eur. J. Med. Chem. 2010, 45, 3702-3708. 61. Cardullo, N.; Spatafora, C.; Musso, N.; Barresi, V.; Condorelli, D.; Tringali, C. Resveratrol related Polymethoxystilbene Glycosides: Synthesis, Antiproliferative Activity, and Glycosidase Inhibition. J. Nat. Prod. 2015, 78, 2675-2683. 62. a) Larosa, M.; Carneiro, J. T.; Yanez-Gascon, M. J.; Alcantara, D.; Selma, M. V.; Beltran, D.; Garcia-Conesa, M. T.; Urban, C.; Lucas, R.; Tomas-Barberan, F.; Morales, J. C.; Espin, J. C. Preventive oral treatment with resveratrol pro-prodrugs drastically reduce colon Inflammation in rodents. J. Med. Chem. 2010, 53,7365-7376. 63. a) Orsini, F.; Pelizzoni, L.; Verotta, T.; Aburjai, Isolation, synthesis, and antiplatelet aggregation activity of Resveratrol 3-O-β-D glucopyranoside and related compounds. J. Nat. Prod. 1997, 60, 1082-1087; b) Ngoc, T. M.; Minh, P. T. H.; Hung, T. M.; Thuong, P. T.; Lee, I.; Min, B. S.; Bae, K. H. Lipoxygenase inhibitory constituents from Rhubarb. Arch. Pharma. Res. 2008, 31, 598-605. 64. Choi, R. J.; Chun, J.; Khan, S.; Kim, Y. S. Desoxyrhapontigenin, a potent anti-inflammatory phytochemical,inhibits LPS-induced inflammatory responses via suppressing NF-κB and MAPK pathways in RAW 264.7 cells. Int. Immun. Pharmacology 2014, 18, 182-190. 65. Li, P.; Tian, W.; Wang, X.; Ma, X. Inhibitory effect of desoxyrhaponticin and rhaponticin, two natural stilbene glycosides from the Tibetan nutritional food Rheum tanguticum Maxim. Ex Balf., on fatty acid synthase and human breast cancer cells. Food Function. 2014, 5, 251-256. 66. a) Ito, T.; Tanaka, T.; Ido, Y.; Nakaya, K. I.; Iinuma, M.; Riswan, S. Stilbenoids isolated from stem bark of Shorea Hemsleyana. Chem. Pharma. Bull. 2000, 48, 1001-1005; b) Baderschneider, B.; Winterhalter, P. Isolation and Characterization of Novel Stilbene Derivatives from Riesling Wine. J. Agric. Food Chem. 2000, 48, 2681-2686; c) Wang, Y. H.; Zhang, Z. K.; He, H. P.; Wang, J. S.; Zhou, H.; Ding, M.; Hao, X. J. Stilbene C-glucosides from Cissus repens. J. Asian Nat. Prod. Res. 2007, 9, 631-636. 67. Morikawa, T.; Chaipech, S.; Matsuda, H.; Hamao, M.; Umeda, Y.; Sato, H.; Tamura, H.; Koni, H.; Ninomiya, K.; Yoshikawa, M.; Pongpiriyadacha, Y.; Hayakawa, T.; Muraoko, O. Antidiabetogenic oligostilbenoids and 3-ethyl- 4-phenyl- 3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg. Med. Chem. 2012, 20, 832-840. 68. a) Torres, P.; Poveda, A.; Barbero, V.; Parra, J. L.; Comelles, F.; Ballesteros, A. O.; Plou, F. J. Enzymatic Synthesis of α-Glucosides of Resveratrol with surfactant activity. Adv. Synth. Catal. 2011, 353, 1077-1086; b) Zhou, M.; Hamza, A.; Zhan, C. G.; Thorson, J. S. Assessing The Regioselectivity of OleD-Catalyzed glycosylation with a Diverse Set of Acceptors. J. Nat. Prod. 2013, 76, 279-286. 69. Bokor, E.; Kun, S.; Goyard, D.; Toth, M.; Praly, J. P.; Vidal, S.; Somsak, L.-C. Glycopyranosyl Arenes and Hetarenes: Synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev. 2017, 117, 1687-1764. 70. a) Santos, R. G. D.; Jesus, A. R.; Caio, J. M.; Rauter, A. P. Fries-type Reactions for the C-Glycosylation of Phenols. Curr. Org. Chem. 2011, 15, 128-148; b) Sinay P, Pure and Appl Chem. 1997, 69, 459-463. 71. a) Mavlan, M.; Ng, K.; Panesar, H.; Yepremyan, A.; Minehan, T. G. Synthesis of 3,3'-di-O-methyl Ardimerin and Exploration of Its DNA Binding Properties. Org. Lett. 2014, 16, 2212-2215; b) Palmacci, E. R.; Seeberger, P. H. Synthesis of C-Aryl and C-AlkylGlycosides Using Glycosyl Phosphates. Org. Lett. 2001, 3, 1547-1550. 72. a) Cheprakov, A. V.; Beletskaya, I. P. The Heck reaction as a sharpening stone of Palladium catalysis. Chem. Rev. 2000, 100, 3009-3066; b) Phan, N. T. S.; Van Der Sluys, M.; Jones, C.W. On the nature of the active species in Palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings homogeneous or heterogeneous Catalysis, a critical review. Adv. Synth. Catal. 2006, 348, 609-679. 73. Rodebaugh,R.; Debenham, J. S.; Fraser-Reid, B. Debenzylation of complex oligosaccharides using ferric chloride. Tetrahedron Lett. 1996, 37, 5477-5478. 74. Ward, D. E.; Gai, Y.; Kaller, B. F. [3+3] Annulation Based on 6-Endo- Trig Radical Cyclization: Regioselectivity and Diastereo-selectivity. J. Org. Chem. 1995, 60, 7830-7836. 75. Konishi, H.; Aritomi, K.; Okano, T.; Kiji, J. A mild selective mono bromination reagent system for alkoxy benzenes: N-Bromosuccinimide- silica gel. Bull. Chem. Soc. Jpn. 1989, 62, 591-593. 76. Castanet, A. S.; Colobert, F. O.; Broutin, P. E. Mild and regioselective iodination of electron-rich aromatics with N-iodosuccinimide and catalytic trifluoroacetic acid. Tetrahedron Lett. 2002, 43, 5047-5048. 77. Kappe, C. O. Controlled Microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250-6284. 78. Corsaro, A.; Chiacchio, U.; Pistara, V.; Romeo, G. Microwave-assisted Chemistry of Carbohydrates. Curr. Org. Chem. 2004, 8, 511-538. 79. a) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005, 127, 4685-4696; b) Xu, H. J.; Zhao, Y. Q.; Zhou, X. F. Palladium catalyzed Heck reaction of aryl chlorides under mild conditions promoted by organic ionic bases. J. Org. Chem. 2011, 76, 8036-8041. 80. Motawia, M. S.; Olsen, C. E.; Denyer, K.; Smith, A. M.; Moller, B. L. Synthesis of 4’-O-acetyl-maltose and α-D-galactopyranosyl-(1→4)-D-glucopyranose for biochemical studies of amylose biosynthesis. Carbohydr. Res. 2001, 330, 309-318. 81. Nishi, Y.; Tanimoto, T. Preparation and characterization of branched β-cyclodextrins having α–L-fucopyranose and a study of their functions. Biosci. Biotechnol. Biochem. 2009, 73, 562-569. 82. Schuler, P.; Fischer, S. N.; Marsch, M.; Oberthur, M. fEfficient α-Mannosylation of Phenols: The role of carbamates as scavengers for activated glycosyl donors. Synthesis 2013, 45, 27-39. 83. Gao, Q.; Gallop, M. A.; Xiang, J. Platinum containing compounds exhibiting cytostatic activity, synthesis and methods of use. (Xenoport Inc) WO Patent WO091790 A1, 2006. 84. Ramtohul, Y. K.; Das, S. K.; Cadilhac, C.; Reddy, T. J.; Gallant, M.; Liu, B.; Dietrich, E.; Vallee, F.; Martel, J.; Poisson, C. Mannose derivatives for treating bacterial infections. (Vertex Pharmaceuticals Incorporation) WO Patent WO100158 A1, 2014. 85. Castaneda, F.; Kinne, R. K. A. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Mol. Cell. Biochem. 2005, 280, 91-98.
|