帳號:guest(18.119.135.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭智維
作者(外文):Guo, Chih-Wei
論文名稱(中文):細菌肽聚醣的合成及其生物應用
論文名稱(外文):Synthesis and Bio-application of Bacterial Muropeptides
指導教授(中文):林俊成
鄭偉杰
指導教授(外文):Lin, Chun-Cheng
Cheng, Wei-Chieh
口試委員(中文):王聖凱
林正坤
梁碧惠
鄭婷仁
口試委員(外文):Wang, Sheng-Kai
Lin, Cheng-Kun
Liang, Pi-Hui
Cheng, Ting-Jen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023808
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:187
中文關鍵詞:肽聚醣正交保護基免疫反應NOD2 蛋白肽聚醣單體轉醣酶偏極化螢光化學探針受體改質之抑制劑
外文關鍵詞:Peptidoglycanorthogonal protecting groupsimmune responseNOD2Lipid IItransglycosylasefluorescence polarizationchemical probesubstrate-based inhibitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:776
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肽聚醣 (peptidoglycan, PGN) 乃是組成細菌細胞壁的主要元件,經由酵素作用
產生的肽聚醣的片段能誘發先天性免疫反應,促進細胞激素的生成以對抗外來的微
生物。然而,許多病原體會利用其肽聚醣的再修飾進而影響其和宿主免疫系統的作
用。因此,為了能夠完整地了解肽聚醣如何誘發先天性免疫系統,我們需要得到結
構各異之肽聚醣碎片。除此之外,抗生素的濫用導致了日趨嚴重的細菌抗藥性問題。
研究顯示,阻斷細菌細胞壁的生成可有效的達到殺菌的效果。其中,生成細菌細胞
壁的必須酵素,轉醣酶 (transglycosylase, TGase) 就是一個很好的標靶酵素。尋找出有效的TGase 抑制劑,是目前解決抗藥性的方法之一。因此,本論文分為以下兩部分探討:
第一部分:氮取代肽聚醣之合成方法與其對免疫反應之關聯性
本實驗室發展了合成氮取代肽聚醣片段之方法。首先,我們備置了正交氮保護
基之雙糖建構組元 (building block)。為了合成更長的肽聚醣片段,我們利用RRV
(relative reactivity value) 方法將此雙糖組成四糖建構組元。有了這些建構組元後,經由保護基的轉換、氧的烷基化、連接胜肽鏈、去除所有的保護基後,即可得到不同氮取代之肽聚醣片段。藉此,即可進一步研究其和PGN 識別受體NOD2 產生免疫反應的關聯性。
第二部分:開發轉醣酶之偏極化螢光測定法並篩選具抑制效果之分子
此部份,我們合成了含有螢光基團之轉醣酶抑制劑F-epi-lipid II (2)。此螢光探
針可應用在偏極化螢光測定法 (fluorescence polarization assay, FP assay),並且和作用在予體位(donor site)的抑制劑富樂黴素 (Moenomycin A, Moe A)搭配應用。由實驗結果得知,F-epi-lipid II 作用於鮑氏不動桿菌轉醣酶 (A. baumannii PBP1b)的受體位 (acceptor site)。藉由此測定法,我們篩選了含有1500 個分子的分子庫,包含了實驗室發展的C-linked lipid II 衍生物。結果顯示兩個天然物有較佳的抑制活性以及搭配安比西林(ampicillin) 對抗藥性金黃色葡萄球菌(MRSA) 有較佳的抑制效果。
Peptidoglycan (PGN) is an essential component of bacterial cell wall and PGN fragments are discovered to initiate innate immune responses and stimulate the production of a wide range of cytokines against invading microorganisms. Interestingly, many pathogenic species contain secondary glycan strand modifications affecting their
interaction with elements of the immune system. For detail investigating the peptidoglycan-induced innate immunity, structurally diverse PGN fragments are required.
Besides, the overuse of antibiotics has led to increasing bacterial resistance. Scientists are engaged in finding new antibiotics. By long term research, interrupting the biosynthetic
steps of bacterial cell wall causes the death of bacteria, and transglycosylase (TGase), an essential enzyme for cell wall biosynthesis, is recognized as a promising target. The
discovery of new TGase inhibitors is one of the efficient strategies to overcome resistance. Herein, the thesis is divided into two parts:
The topic title of the first chapter is “Diverse synthesis of bacterial N-substituted muropeptides and disaccharide dipeptides (GMDPs) for human NOD2 stimulation”. In this part, we developed a flexible synthetic approach to prepare N-substituted PGN
fragments. First, orthogonally N-protected disaccharide building blocks were synthesized to lead for preparing a longer glycan backbone. Notably, the tetrasaccharide chain was
successfully constructed by using the RRV (relative reactivity value) strategy. With the qualified disaccharide building blocks in hand, diverse N-substituted muropeptides were prepared through a sequence of steps, including transformations of the protecting groups, O-alkylation, peptide conjugation, and deprotection. These valuable compounds were applied for the human NOD2 stimulation studies. Next, the topic title of the second part is “Development of a fluorescence polarization assay for the acceptor-site on TGase.” In this part, the fluorescence-labeled TGase inhibitor, F-epi-lipid II (2), was developed as a chemical probe in the fluorescent polarization assay platform toward TGase. Based on our FP assay
results, F-epi-lipid II (2) was identified as the acceptor site binder against A. baumannii PBP1b. Next, a 1500-membraned small molecule library, including our synthetic C-linked lipid II analogues were applied for screening. Interestingly, two natural
compounds with low IC50 values were identified, and both showed a synergistic effect with ampicillin against MRSA. The newly formed C-linked lipid II analogue in this study was validated to locate at the acceptor site of TGase and showed better inhibition than our
previously synthesized one by using FP and HPLC assay.
摘要......................................................... i
Abstract .................................................. iii
謝誌 ........................................................ v
Table of contents .......................................... vi
List of Figures ............................................ ix
List of Schemes ............................................ xi
List of Tables ............................................ xii
Glossary of Abbreviations ................................ xiii
Part I: Diverse synthesis of bacterial N-substituted muropeptides and disaccharide dipeptides (GMDPs) for human NOD2 stimulation.................................................. 1
1. Introduction ............................................. 2
1.1 Bacterial cell wall–Peptidoglycan (PGN)........................................................ 3
1.2 Modification of PGN glycan chain ........................ 4
1.2.1 N-Deacetylated peptidoglycan........................... 4
1.2.2 O-Acetylated NAM....................................... 4
1.2.3 N-Glycolylation of NAM ................................ 5
1.2.4 Other post-modifications of the glycan chain............6
1.3 Current investigation on the preparation of PGN fragments ............................................................. 6
1.4 Host recognition of muropeptides ....................... 10
1.4.1 Dissection of the molecular basis of muropeptides that recognize hNOD2............................................. 11
1.5 Motivation ............................................. 13
2. Results and Discussion .................................. 14
2.1 Synthesis of monosaccharide building blocks............. 15
2.2 Parallel synthesis of disaccharide building blocks.......17
2.3 Model studies: selective removal of orthogonal P1 and P2 ............................................................ 18
2.4 Modular synthesis of PGN tetrasaccharide backbones ............................................................ 20
2.5 Diverse synthesis of N-substituted GMDPs................ 23
2.6. The hNOD2 assay evaluation ............................ 27
3. Conclusion .............................................. 28
References ................................................. 30

Part II: Development of a fluorescence polarization assay for the acceptor-site on TGase...................................34
1. Introduction .............................................35
1.1 Bacterial cell wall biosynthesis.........................36
1.2 Bacterial TGase is a promising target....................37
1.3 Current discovery of TGase inhibitors ...................38
1.4 Motivation ..............................................39
2. Results and discussion....................................42
2.1 Synthesis of F-epi-lipid II (2) as a fluorescent probe...43
2.2 Synthesis of epi-lipid II-C-O-PP-C20 (18) as a C-linked inhibitor ...................................................44
2.3 Development of fluorescence polarization assay for HTS...45
2.3.1 The effect of detergent and the selection of appropriate TGase........................................................45
2.3.2 The binding influence between TGase and epi-lipid II analogues ...................................................46
2.3.3 Review of the fluorescent probes: the effect of lipid length.......................................................47
2.3.4 Working concentration of fluorescent probe for HTS.....48
2.4 Binding site validation: Competitive evaluation of site- occupied probe and the complement inhibitor..................49
2.5 Hits screening by the validated acceptor site FP assay...51
2.6 biological evaluation of screened hits ..................52
3. Conclusion ...............................................55
References ..................................................56
Experimental section ........................................59
Appendix: NMR spectra ......................................120
Appendix: Publication ......................................164
Part I
(1) Bacteria https://en.wikipedia.org/wiki/Bacteria.
(2) Turroni, S.; Brigidi, P.; Cavalli, A.; Candela, M. Microbiota-Host Transgenomic
Metabolism, Bioactive Molecules from the Inside. J. Med. Chem. 2018, 61 (1),
47–61.
(3) Infectious diseases‒Symptoms and causes‒Mayo Clinic
https://www.mayoclinic.org/diseases-conditions/infectious-diseases/symptoms-cau
ses/syc-20351173 (accessed Jul 18, 2020).
(4) Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. How Antibiotics Kill Bacteria: From
Targets to Networks. Nat. Rev. Microbiol. 2010, 8 (6), 423–435.
(5) Girardin, S. E.; Boneca, I. G.; Viala, J.; Chamaillard, M.; Labigne, A.; Thomas, G.;
Philpott, D. J.; Sansonetti, P. J. NOD2 Is a General Sensor of Peptidoglycan
through Muramyl Dipeptide (MDP) Detection. J. Biol. Chem. 2003, 278 (11),
8869–8872.
(6) Wolf, A. J.; Underhill, D. M. Peptidoglycan Recognition by the Innate Immune
System. Nat. Rev. Immunol. 2018, 18 (4), 243–254.
(7) Girardin, S. E.; Boneca, I. G.; Carneiro, L. A. M.; Antignac, A.; Jéhanno, M.; Viala,
J.; Tedin, K.; Taha, M. K.; Labigne, A.; Zähringer, U.; et al. NOD1 Detects a
Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan. Science (80-. ).
2003, 300 (5625), 1584–1587.
(8) Silhavy, T. J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring
Harbor perspectives in biology. Cold Spring Harbor Laboratory Press 2010.
(9) Monteiro, J. M.; Covas, G.; Rausch, D.; Filipe, S. R.; Schneider, T.; Sahl, H. G.;
Pinho, M. G. The Pentaglycine Bridges of Staphylococcus Aureus Peptidoglycan
Are Essential for Cell Integrity. Sci. Rep. 2019, 9 (1), 1–10.
(10) Vollmer, W.; Blanot, D.; DePedro, M. A. Peptidoglycan Structure and Architecture.
FEMS Microbiol. Rev. 2008, 32 (2), 149–167.
(11) Porfírio, S.; Carlson, R. W.; Azadi, P. Elucidating Peptidoglycan Structure: An
Analytical Toolset. Trends Microbiol. 2019, 27 (7), 607–622.
(12) Irazoki, O.; Hernandez, S. B.; Cava, F. Peptidoglycan Muropeptides: Release,
Perception, and Functions as Signaling Molecules. Front. Microbiol. 2019, 10
(MAR), 500.
(13) Griffin, M. E.; Hespen, C. W.; Wang, Y. C.; Hang, H. C. Translation of
Peptidoglycan Metabolites into Immunotherapeutics. Clin. Transl. Immunol. 2019,
8 (12), e1095.
(14) Boneca, I. G.; Dussurget, O.; Cabanes, D.; Nahori, M. A.; Sousa, S.; Lecuit, M.;
Psylinakis, E.; Bouriotis, V.; Hugot, J. P.; Giovannini, M.; et al. A Critical Role for
Peptidoglycan N-Deacetylation in Listeria Evasion from the Host Innate Immune
System. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (3), 997–1002.
(15) Bernard, E.; Rolain, T.; Courtin, P.; Guillot, A.; Langella, P.; Hols, P.;
Chapot-Chartier, M. P. Characterization of O-Acetylation of N-Acetylglucosamine:
A Novel Structural Variation of Bacterial Peptidoglycan. J. Biol. Chem. 2011, 286
(27), 23950–23958.
(16) Brott, A. S.; Clarke, A. J. Peptidoglycan O-Acetylation as a Virulence Factor: Its
Effect on Lysozyme in the Innate Immune System. Antibiotics 2019, 8 (3), 94.
(17) Mahapatra, S.; Scherman, H.; Brennan, P. J.; Crick, D. C. N-Glycolylation of the
Nucleotide Precursors of Peptidoglycan Biosynthesis of Mycobacterium Spp. Is
31
Altered by Drug Treatment. J. Bacteriol. 2005, 187 (7), 2341–2347.
(18) Vollmer, W. Structural Variation in the Glycan Strands of Bacterial Peptidoglycan.
FEMS Microbiol. Rev. 2008, 32 (2), 287–306.
(19) Johnson, J. W.; Fisher, J. F.; Mobashery, S. Bacterial Cell-Wall Recycling. Ann. N.
Y. Acad. Sci. 2012, 1277 (1), 54–75.
(20) Kusumoto, S.; Yamamoto, K.; Imoto, M. Chemical Synthesis and Biological
Activities of Two Disaccharide Dipeptides Corresponding to the Repeating Units
of Bacterial Peptidoglycan. Bull. Chem. Soc. Jpn. 1986, 59 (5), 1411–1417.
(21) Kusumoto, S.; Imoto, M.; Ogiku, T.; Shiba, T. Synthesis of β(1–4)-Linked
Disaccharides of N-Acetylglucosamine and N-Acetylmuramic Acid by Their Direct
Condensation. Bull. Chem. Soc. Jpn. 1986, 59 (5), 1419–1423.
(22) Termin, A.; Schmidt, R. R. Glycosylimidates, 54. Synthesis of the GlcNAc
β(1→4)MurNAc β(1→4)GlcNAc β(1→4)MurNAc Tetrasaccharide of Bacterial
Peptidoglycan. Liebigs Ann. der Chemie 1992, 1992 (5), 527–533.
(23) Inamura, S.; Fukase, K.; Kusumoto, S. Synthetic Study of Peptidoglycan Partial
Structures. Synthesis of Tetrasaccharide and Octasaccharide Fragments.
Tetrahedron Lett. 2001, 42 (43), 7613–7616.
(24) Wang, N.; Huang, C. Y.; Hasegawa, M.; Inohara, N.; Fujimoto, Y.; Fukase, K.
Glycan Sequence-Dependent Nod2 Activation Investigated by Using a Chemically
Synthesized Bacterial Peptidoglycan Fragment Library. ChemBioChem 2013, 14
(4), 482–488.
(25) Kadonaga, Y.; Wang, N.; Fujimoto, Y.; Fukase, K. Solid-Phase Synthesis of
Bacterial Cell Wall Peptidoglycan Fragments. Chem. Lett. 2014, 43 (9),
1461–1463.
(26) Hesek, D.; Lee, M.; Morio, K. I.; Mobashery, S. Synthesis of a Fragment of
Bacterial Cell Wall. J. Org. Chem. 2004, 69 (6), 2137–2146.
(27) Kahne, D.; Walker, S.; Cheng, Y.; VanEngen, D. Glycosylation of Unreactive
Substrates. J. Am. Chem. Soc. 1989, 111 (17), 6881–6882.
(28) Zhang, Y.; Fechter, E. J.; Wang, T. S. A.; Barrett, D.; Walker, S.; Kahne, D. E.
Synthesis of Heptaprenyl-Lipid IV to Analyze Peptidoglycan Glycosyltransferases.
J. Am. Chem. Soc. 2007, 129 (11), 3080–3081.
(29) Gildersleeve, J.; Smith, A.; Sakurai, K.; Raghavan, S.; Kahne, D. Scavenging
Byproducts in the Sulfoxide Glycosylation Reaction: Application to the Synthesis
of Ciclamycin 0. J. Am. Chem. Soc. 1999, 121 (26), 6176–6182.
(30) Gampe, C. M.; Tsukamoto, H.; Wang, T. S. A.; Walker, S.; Kahne, D. Modular
Synthesis of Diphospholipid Oligosaccharide Fragments of the Bacterial Cell Wall
and Their Use to Study the Mechanism of Moenomycin and Other Antibiotics.
Tetrahedron 2011, 67 (51), 9771–9778.
(31) Lee, J. C.; Greenberg, W. A.; Wong, C. H. Programmable Reactivity-Based
One-Pot Oligosaccharide Synthesis. Nat. Protoc. 2007, 1 (6), 3143–3152.
(32) Shih, H. W.; Chen, K. T.; Cheng, T. J. R.; Wong, C. H.; Cheng, W. C. A New
Synthetic Approach toward Bacterial Transglycosylase Substrates, Lipid II and
Lipid IV. Org. Lett. 2011, 13 (17), 4600–4603.
(33) Philpott, D. J.; Sorbara, M. T.; Robertson, S. J.; Croitoru, K.; Girardin, S. E. NOD
Proteins: Regulators of Inflammation in Health and Disease. Nature Reviews
Immunology. 2014, 14, 9–23.
(34) D’Ambrosio, E. A.; Drake, W. R.; Mashayekh, S.; Ukaegbu, O. I.; Brown, A. R.;
Grimes, C. L. Modulation of the NOD-like Receptors NOD1 and NOD2: A
Chemist’s Perspective. Bioorg. Med. Chem. Lett. 2019, 29 (10), 1153–1161.
(35) Kumagai, Y.; Takeuchi, O.; Akira, S. Pathogen Recognition by Innate Receptors. J.
32
Infect. Chemother. 2008, 14 (2), 86–92.
(36) Petterson, T.; Jendholm, J.; Månsson, A.; Bjartell, A.; Riesbeck, K.; Cardell, L.-O.
Effects of NOD-like Receptors in Human B Lymphocytes and Crosstalk between
NOD1/NOD2 and Toll-like Receptors. J. Leukoc. Biol. 2011, 89 (2), 177–187.
(37) Negroni, A.; Pierdomenico, M.; Cucchiara, S.; Stronati, L. NOD2 and
Inflammation: Current Insights. J. Inflamm. Res. 2018, 11, 49–60.
(38) Wang, Q.; Matsuo, Y.; Pradipta, A. R.; Inohara, N.; Fujimoto, Y.; Fukase, K.
Synthesis of Characteristic Mycobacterium Peptidoglycan (PGN) Fragments
Utilizing with Chemoenzymatic Preparation of Meso-Diaminopimelic Acid (DAP),
and Their Modulation of Innate Immune Responses. Org. Biomol. Chem. 2016, 14
(3), 1013–1023.
(39) Inamura, S.; Fujimoto, Y.; Kawasaki, A.; Shiokawa, Z.; Woelk, E.; Heine, H.;
Lindner, B.; Inohara, N.; Kusumoto, S.; Fukase, K. Synthesis of Peptidoglycan
Fragments and Evaluation of Their Biological Activity. Org. Biomol. Chem. 2006,
4 (2), 232–242.
(40) Melnyk, J. E.; Mohanan, V.; Schaefer, A. K.; Hou, C. W.; Grimes, C. L.
Peptidoglycan Modifications Tune the Stability and Function of the Innate Immune
Receptor Nod2. J. Am. Chem. Soc. 2015, 137 (22), 6987–6990.
(41) Chen, K.-T.; Huang, D.-Y.; Chiu, C.-H.; Lin, W.-W.; Liang, P.-H.; Cheng, W.-C.
Synthesis of Diverse N-Substituted Muramyl Dipeptide Derivatives and Their Use
in a Study of Human NOD2 Stimulation Activity. Chemistry (Easton). 2015, 21
(34), 11984–11988.
(42) Teo, Z. Z. Modifications of Bacterial Cell Wall Muramyl Dipeptides toward NOD2
Stimulation Study, National Taiwan University, 2018.
(43) Enugala, R.; Carvalho, L. C. R.; Dias Pires, M. J.; Marques, M. M. B.
Stereoselective Glycosylation of Glucosamine: The Role of the N-Protecting
Group. Chem. Asian J. 2012, 7 (11), 2482–2501.
(44) Ellervik, U.; Magnusson, G. Glycosylation with N-Troc-Protected Glycosyl
Donors. Carbohydr. Res. 1996, 280 (2), 251–260.
(45) Roychoudhury, R.; Pohl, N. L. B. Synthesis of Fluorous Photolabile Aldehyde and
Carbamate and Alkyl Carbamate Protecting Groups for Carbohydrate-Associated
Amines. Org. Lett. 2014, 16 (4), 1156–1159.
(46) Hansen, S. G.; Skrydstrup, T. Studies Directed to the Synthesis of
Oligochitosans‒Preparation of Building Blocks and Their Evaluation in
Glycosylation Studies. European J. Org. Chem. 2007, No. 20, 3392–3401.
(47) Keglević, D.; Kojić-Prodić, B.; Tomišić, Z. B.; Spek, A. L. Synthesis and
Characterisation of Muramic Acid 1’,2-Lactam-β-(1→4)-D-Glucosamine
Derivatives Related to Repeating Units of Bacterial Spore Cortex. Carbohydr. Res.
1998, 313 (1), 1–14.
(48) Robina, I.; Gómez-Bujedo, S.; Fernández-Bolaños, J. G.; Fuentes, J.; Spaink, H. P.
Synthesis and Biological Evaluation of Oligosaccharides Related to the Molecule
Signals in Plant Defence and the Rhizobium-Legume Symbiosis. Tetrahedron
2002, 58 (3), 521–530.
(49) Saha, S. L.; VanNieuwenhze, M. S.; Hornback, W. J.; Aikins, J. A.; Blaszczak, L.
C. Synthesis of an Orthogonally Protected Precursor to the Glycan Repeating Unit
of the Bacterial Cell Wall. Org. Lett. 2001, 3 (22), 3575–3577.
(50) Oikawa, M.; Liu, W.-C.; Nakai, Y.; Koshida, S.; Fukase, K.; Kusumoto, S.
Regioselective Reductive Opening of 4,6-Benzylidene Acetals of Glucose or
Glucosamine Derivatives by BH3Me2NHꞏBF3OEt2. Synlett 1996, 12, 1179–1180.
(51) Pertel, S. S.; Oseĺskaya, V. Y.; Chirva, V. Y.; Kakayan, E. S. Influence of a
33
δ-Lactam-Type Cyclic Protecting Group on the Reactivity of a 4-Hydroxy
Glycosyl Acceptor Derivative of d-Glucosamine. Russ. Chem. Bull. 2015, 64 (5),
1119–1124.
(52) Peng, P.; Xiong, D. C.; Ye, X. S. Ortho-Methylphenylthioglycosides as Glycosyl
Building Blocks for Preactivation-Based Oligosaccharide Synthesis. Carbohydr.
Res. 2014, 384, 1–8.
(53) Somsák, L.; Czifrák, K.; Veres, E. Selective Removal of 2,2,2-Trichloroethyl- and
2,2,2- Trichloroethoxycarbonyl Protecting Groups with Zn-N-Methylimidazole in
the Presence of Reducible and Acid-Sensitive Functionalities. Tetrahedron Lett.
2004, 45 (49), 9095–9097.
(54) Debenham, J. S.; Rodebaugh, R.; Fraser-Reid, B. Nodulation Factors: A Strategy
for Convergent Assembly of a Late-Stage Key Intermediate Illustrated by the Total
Synthesis of NodRf-III (C18:1) (MeFuc). J. Org. Chem. 1996, 61 (19), 6478–6479.
(55) Yu, B.; Tao, H. Glycosyl Trifluoroacetimidates. Part 1: Preparation and
Application as New Glycosyl Donors. Tetrahedron Lett. 2001, 42 (12),
2405–2407.
(56) Crich, D.; Dudkin, V. Why Are the Hydroxy Groups of Partially Protected
N-Acetylglucosamine Derivatives Such Poor Glycosyl Acceptors, and What Can
Be Done about It? A Comparative Study of the Reactivity of N-Acetyl-,
N-Phthalimido-, and 2-Azido-2-Deoxy-Glucosamine Derivatives . J. Am. Chem.
Soc. 2001, 123 (28), 6819–6825.
(57) Kawahara, S.; Wada, T.; Sekine, M. 1:1 and 1:2 Complexes of Bu4NF and
BF3ꞏEt2O: Unique Properties as Reagents for Cleavage of Silyl Ethers.
Tetrahedron Lett. 1996, 37 (4), 509–512.
(58) Kumar H. V., R.; Naruchi, K.; Miyoshi, R.; Hinou, H.; Nishimura, S. I. A New
Approach for the Synthesis of Hyperbranched N-Glycan Core Structures from
Locust Bean Gum. Org. Lett. 2013, 15 (24), 6278–6281.
(59) Paliakov, E.; Strekowski, L. Boron Tribromide Mediated Debenzylation of
Benzylamino and Benzyloxy Groups. Tetrahedron Lett. 2004, 45 (21), 4093–4095.
(60) Fujimoto, Y.; Inamura, S.; Kawasaki, A.; Shiokawa, Z.; Shimoyama, A.;
Hashimoto, T.; Kusumoto, S.; Fukase, K. Chemical Synthesis of Peptidoglycan
Fragments for Elucidation of the Immunostimulating Mechanism. J. Endotoxin Res.
2007, 13 (3), 189–196.
(61) Takahashi, S.; Terayama, H.; Koshino, H.; Kuzuhara, H. Design and Synthesis of a
Potential Endoglycosidase Inhibitor: Chemical Conversion of
N,N′-Diacetylchitobiose into Novel Pseudodisaccharide Containing a
Fivemembered Cyclic N,N-Dimethylguanidine. Chem. Lett. 1996, 25 (2), 97–98.
(62) Jana, M.; Ghosh, A.; Santra, A.; Kar, R. K.; Misra, A. K.; Bhunia, A.Synthesis of
Novel Muramic Acid Derivatives and Their Interaction with Lysozyme: Action of
Lysozyme Revisited. J. Colloid Interface Sci. 2017, 498, 395–404.
(63) Keglević, D.; Kojić-Prodić, B.; Banić, Z.; Tomić, S.; Puntarec, V. Synthesis and
Conformational Analysis of Muramic Acid δ-Lactam Structures and Their
4-O-(2-Acetamido-2-Deoxy-β-D-Glucopyranosyl) Derivatives, Characteristic of
Bacterial Spore Peptidoglycan. Carbohydr. Res. 1993, 241 (C), 131–152.
Part II
(1) Fischbach, M. A.; Walsh, C. T.Antibiotics for Emerging Pathogens. Science (80-. ).
2009, 325 (5944), 1089–1093.
(2) New solutions to antibiotic resistance - Mega
https://mega.online/en/articles/antibiotic-armageddon (accessed Jul 20, 2020).
(3) Walsh, C. Where Will New Antibiotics Come From? Nat. Rev. Microbiol. 2003, 1
(1), 65–70.
(4) Chellat, M. F.; Raguž, L.; Riedl, R. Targeting Antibiotic Resistance. Angew. Chem.
Int. Ed. 2016, 55 (23), 6600–6626.
(5) Ritter, T. K.; Wong, C. H. Carbohydrate-Based Antibiotics: A New Approach to
Tackling the Problem of Resistance. Angew. Chem. Int. Ed. 2001, 40 (19),
3508–3533.
(6) Silver, L. L. Novel Inhibitors of Bacterial Cell Wall Synthesis. Curr. Opin. Micro.
Elsevier Ltd October 1, 2003, pp 431–438.
(7) Barreteau, H.; Kovač, A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot, D.
Cytoplasmic Steps of Peptidoglycan Biosynthesis. FEMS Microbiol. Rev. 2008, 32
(2), 168–207.
(8) Teo, A. C. K.; Roper, D. I. Core Steps of Membrane-Bound Peptidoglycan
Biosynthesis: Recent Advances, Insight and Opportunities. Antibiotics 2015, 4 (4),
495–520.
(9) Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G. Glycosyltransferases:
Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77 (1),
521–555.
(10) Halliday, J.; McKeveney, D.; Muldoon, C.; Rajaratnam, P.; Meutermans, W.
Targeting the Forgotten Transglycosylases. Biochem. Pharmacol. 2006, 71 (7),
957–967.
(11) Ostash, B.; Walker, S. Moenomycin Family Antibiotics: Chemical Synthesis,
Biosynthesis, and Biological Activity. Nat. Prod. Rep. 2010, 27 (11), 1594–1617.
(12) Cheng, T. J. R.; Sung, M. T.; Liao, H. Y.; Chang, Y. F.; Chen, C. W.; Huang, C. Y.;
Chou, L. Y.; Wu, Y.Da; Chen, Y. H.; Cheng, Y. S. E.; et al. Domain Requirement
of Moenomycin Binding to Bifunctional Transglycosylases and Development of
High-Throughput Discovery of Antibiotics. Proc. Natl. Acad. Sci. U. S. A. 2008,
105 (2), 431–436.
(13) Gampe, C. M.; Tsukamoto, H.; Doud, E. H.; Walker, S.; Kahne, D. Tuning the
Moenomycin Pharmacophore to Enable Discovery of Bacterial Cell Wall Synthesis
Inhibitors. J. Am. Chem. Soc. 2013, 135 (10), 3776–3779.
(14) Sofia, M. J.; Allanson, N.; Hatzenbuhler, N. T.; Jain, R.; Kakarla, R.; Kogan, N.;
Liang, R.; Liu, D.; Silva, D. J.; Wang, H.; et al. Discovery of Novel Disaccharide
Antibacterial Agents Using a Combinatorial Library Approach. J. Med. Chem.
1999, 42 (17), 3193–3198.
(15) Garneau, S.; Qiao, L.; Chen, L.; Walker, S.; Vederas, J. C. Synthesis of Mono- and
Disaccharide Analogs of Moenomycin and Lipid II for Inhibition of
Transglycosylase Activity of Penicillin-Binding Protein 1b. Bioorganic Med. Chem.
2004, 12 (24), 6473–6494.
(16) Mesleh, M. F.; Rajaratnam, P.; Conrad, M.; Chandrasekaran, V.; Liu, C. M.;
Pandya, B. A.; Hwang, Y. S.; Rye, P. T.; Muldoon, C.; Becker, B.; et al. Targeting
57
Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase
Activity. Chem. Biol. Drug Des. 2016, 87 (2), 190–199.
(17) Hsu, C. H.; Schelwies, M.; Enck, S.; Huang, L. Y.; Huang, S. H.; Chang, Y. F.;
Cheng, T. J. R.; Cheng, W. C.; Wong, C. H. Iminosugar C-Glycoside Analogues of
α-D-GlcNAc-1-Phosphate: Synthesis and Bacterial Transglycosylase Inhibition. J.
Org. Chem. 2014, 79 (18), 8629–8637.
(18) Wang, X.; Krasnova, L.; Wu, K. B.; Wu, W.-S. S.; Cheng, T.-J. J.; Wong, C.-H. H.
Towards New Antibiotics Targeting Bacterial Transglycosylase: Synthesis of a
Lipid II Analog as Stable Transition-State Mimic Inhibitor. Bioorganic Med. Chem.
Lett. 2018, 28 (16), 2708–2712.
(19) Cheng, T. J. R.; Wu, Y. T.; Yang, S. T.; Lo, K. H.; Chen, S. K.; Chen, Y. H.;
Huang, W. I.; Yuan, C. H.; Guo, C. W.; Huang, L. Y.; et al. High-Throughput
Identification of Antibacterials against Methicillin-Resistant Staphylococcus
Aureus (MRSA) and the Transglycosylase. Bioorganic Med. Chem. 2010, 18 (24),
8512–8529.
(20) Huang, S. H.; Wu, W. S.; Huang, L. Y.; Huang, W. F.; Fu, W. C.; Chen, P. T.;
Fang, J. M.; Cheng, W. C.; Cheng, T. J. R.; Wong, C. H. New Continuous
Fluorometric Assay for Bacterial Transglycosylase Using Förster Resonance
Energy Transfer. J. Am. Chem. Soc. 2013, 135 (45), 17078–17089.
(21) Boes, A.; Brunel, J. M.; Derouaux, A.; Kerff, F.; Bouhss, A.; Touze, T.; Breukink,
E.; Terrak, M. Squalamine and Aminosterol Mimics Inhibit the Peptidoglycan
Glycosyltransferase Activity of Pbp1b. Antibiotics 2020, 9 (7), 1–11.
(22) Boes, A.; Olatunji, S.; Mohammadi, T.; Breukink, E.; Terrak, M. Fluorescence
Anisotropy Assays for High Throughput Screening of Compounds Binding to
Lipid II, PBP1b, FtsW and MurJ. Sci. Rep. 2020, 10 (1), 6280.
(23) Huang, C. Y.; Shih, H. W.; Lin, L. Y.; Tien, Y. W.; Cheng, T. J. R.; Cheng, W. C.;
Wong, C. H.; Ma, C. Crystal Structure of Staphylococcus Aureus Transglycosylase
in Complex with a Lipid II Analog and Elucidation of Peptidoglycan Synthesis
Mechanism. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (17), 6496–6501.
(24) Lin, C. K.; Chen, K. T.; Hu, C. M.; Yun, W. Y.; Cheng, W. C. Synthesis of
1-C-Glycoside-Linked Lipid II Analogues toward Bacterial Transglycosylase
Inhibition. Chem. Eur. J. 2015, 21 (20), 7511–7519.
(25) Chen, K. T.; Lin, C. K.; Guo, C. W.; Chang, Y. F.; Hu, C. M.; Lin, H. H.; Lai, Y.;
Cheng, T. J. R.; Cheng, W. C. Effect of the Lipid II Sugar Moiety on Bacterial
Transglycosylase: The 4-Hydroxy Epimer of Lipid II Is a TGase Inhibitor. Chem.
Commun. 2017, 53 (4), 771–774.
(26) Liu, C. Y.; Guo, C. W.; Chang, Y. F.; Wang, J. T.; Shih, H. W.; Hsu, Y. F.; Chen,
C. W.; Chen, S. K.; Wang, Y. C.; Cheng, T. J. R.; et al. Synthesis and Evaluation
of a New Fluorescent Transglycosylase Substrate: Lipid II-Based Molecule
Possessing a Dansyl-C20 Polyprenyl Moiety. Org. Lett. 2010, 12 (7), 1608–1611.
(27) Meng, F. C.; Chen, K. T.; Huang, L. Y.; Shih, H. W.; Chang, H. H.; Nien, F. Y.;
Liang, P. H.; Cheng, T. J. R.; Wong, C. H.; Cheng, W. C. Total Synthesis of
Polyprenyl N-Glycolyl Lipid II as a Mycobacterial Transglycosylase Substrate.
Org. Lett. 2011, 13 (19), 5306–5309.
(28) VanNieuwenhze, M. S.; Mauldin, S. C.; Zia-Ebrahimi, M.; Winger, B. E.;
Hornback, W. J.; Saha, S. L.; Aikins, J. A.; Blaszczak, L. C. The First Total
Synthesis of Lipid II: The Final Monomeric Intermediate in Bacterial Cell Wall
Biosynthesis. J. Am. Chem. Soc. 2002, 124 (14), 3656–3660.
(29) Larner, J.; Price, J. D.; Heimark, D.; Smith, L.; Rule, G.; Piccariello, T.; Fonteles,
M. C.; Pontes, C.; Vale, D.; Huang, L. Isolation, Structure, Synthesis, and
58
Bioactivity of a Novel Putative Insulin Mediator. A Galactosamine Chiro-Inositol
Pseudo-Disaccharide Mn2+ Chelate with Insulin-like Activity. J. Med. Chem. 2003,
46 (15), 3283–3291.
(30) Shih, H. W.; Chang, Y. F.; Li, W. J.; Meng, F. C.; Huang, C. Y.; Ma, C.; Cheng, T.
J. R.; Wong, C. H.; Cheng, W. C. Effect of the Peptide Moiety of Lipid II on
Bacterial Transglycosylase. Angew. Chem. Int. Ed. 2012, 51 (40), 10123–10126.
(31) Mun, S. H.; Kang, O. H.; Kong, R.; Zhou, T.;Kim, S. A.; Shin, D. W.; Kwon, D.
Y. Punicalagin Suppresses Methicillin Resistance of Staphylococcus Aureus to Oxacillin. J. Pharmacol. Sci. 2018, 137 (4), 317–323.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *