帳號:guest(18.220.86.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林範誠
作者(外文):Lin, Fan-Cheng
論文名稱(中文):功能性表面電漿奈米結構的基礎,設計和應用
論文名稱(外文):Fundamentals, Designs and Applications of Functional Plasmonic Nanostructures
指導教授(中文):蔡易州
黃哲勳
指導教授(外文):Tsai, Yi-Chou
Hunag, Jer-Shing
口試委員(中文):嚴大任
張玉明
郭俊宏
黃承彬
口試委員(外文):Yen, Ta-Jen
Chang, Yu-Ming
Kuo, Chun-Hong
Huang, Chen-Bin
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:100023577
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:196
中文關鍵詞:表面電漿共振時域空域解析光譜學奈米電漿子結構時域有限差分法螢光光譜解析奈米光天線
外文關鍵詞:Surface plasmon resonanceTime-domain space-domain spectroscopynano plasmonic structuresFinite-Difference Time-Domain, FDTDtime-resolved fluorescence spectrometryoptical nanoantenna
相關次數:
  • 推薦推薦:0
  • 點閱點閱:215
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
奈米光學為現代光學中的一個重要領域。由於現代各項奈米技術的發展,使得光學系統所能量測的尺度能夠超越繞射極限的限制。奈米光學涉及了關於奈米結構的設計製作與應用,以將可見光聚焦在繞射及限之下奈米級空間範圍內。最大的特點是光場的頻率高至可見光頻段而空間分布則可限縮於小於繞射極限的範圍內,這除可大幅提高光與物質作用的強度之外,亦提供操控光物理與光化學反應的可能性。因此,奈米光學的重要性不僅在於克服繞射極限的限制,還可將光學元件的檢測極限和靈敏度大幅提高,甚至達到偵測單分子的靈敏度。經過良好設計的共振電漿奈米結構,具有類似天線之功能,透過局域性表面電漿共振可將遠場自由傳的電磁波轉為高增益的近場光能量,因此電漿奈米結構周圍之光近場強度可大幅增強至非聚焦光的1000倍以上。利用此局域性光近場,功能性電漿奈米結構附近的物質可以有效地與光相互作用。在本論文中,將介紹與電漿奈米光學相關的幾個研究課題。特別地,本論文研究了電漿奈米結構如何有效地增強光與物質之間的交互作用,以及從自由傳遞的光波耦合進入表面電漿共振的機制。第一章為電漿奈米光學的概述和簡介,其餘章節則為本人博士期間的幾項重要研究題目,略述如下。第二章探討電漿奈米結構輻射和非輻射本徵模態控制下的雙光子發光光譜。電漿金奈米天線可以在受激共振的狀態下,產生強烈的非極化雙光子光致發光現象和單光子光致發光現象,可作為奈米天線本徵模研究的理想局部寬帶光子源。在本章中,我們將雙光子光致發光光譜與暗場散射光譜和數值模擬光譜相比,針對不同長度的金奈米天線進行了全面性的討論和仔細研究。而從這些證據光譜中,我們可發現亞輻射的反鍵結本徵模式以及超輻射鍵結本徵模式各別地導致了雙光子光致發光的抑制以及增強現象。後續我們利用了單光子光致發光模式的相似光學特性,將其應用於八木宇田電漿奈米天線和寬帶的對數週期型天線上,首次產生可見光頻段的寬頻指向性輻射。在第三章中,我們製作具有次波長模態轉換器的電漿奈米電路,首次實現在高頻電漿雙線傳輸線路中選擇性的模態轉換,可用於選擇適合光與物質相互作用的反對稱模態式或具有較長傳播長度的對稱模態。在第四章中,我們提出了二維電漿都卜勒光柵並展示其應用。電漿都卜勒光柵擁為一寬頻且具有方位角解析的奈米光學應用平台。都卜勒光柵的特點是容易設計與製作,並可任意選擇工作波長範圍及執行單波長光譜分析。我們實際漿二維電漿都卜勒光柵運用到環境折射率偵測與氫氣的感測上。第五章闡述了自組裝智能電漿奈米粒子氫氣感測器。在這項工作裡,我們展示了化學合成的雙金屬奈米結構,金-鈀-金奈米結構,用金屬-金屬-金屬電漿奈米結構作為奈米級的感應探針,其中感測層以鈀金屬作為核心,並用雙層金天線作為框架,以增強對氫氣感測的效果。此奈米粒子的導電間隙層鈀能吸附氫氣並導致材料特性改變,進而引起了電荷轉移電漿效應,因此增強了氫氣感測的靈敏度。最後在第六章中,我們提出了有關於二維的二硫化鎢材料谷極化(Valley polarization)激發光研究。我們利用能量略低於能帶隙的激發光,有效地抑制激發電子的隨機重新分佈,從而大大提高在室溫下的高谷極化率。以上的研究方向,無論是奈米天線的特性本徵模態共振行為影響其單光子或雙光子光致放光現象以及延伸的電漿子電路系統與模態轉換器,或者是利用都卜勒效應製作出來二維平面角解析的電漿應用光柵,抑或是化學合成出的智慧電漿奈米感測探針,都是目前屬於奈米光學-表面電漿共振的研究領域,該領域不僅在光學上有了豐碩的成果,更在其他生醫感測、化學催化等應用科學領域中,也佔有一席之地。此外以過渡金屬硫化物的二維谷極化材料,因具有極特殊光學特性,近年來亦成為熱門研究領域。近年來奈米光學隨著奈米製程技術、光學量測技術及電腦數值模擬的成熟與推進而蓬勃發展,前人的步步腳印使得光世代的未來科技能夠完善,希望本博士論文內的工作,能對基礎科學研究及人類未來的便利生活有所貢獻。
Nano-optics is an important field in modern optics. Nano-optics involves the use of nanostructures to focus electromagnetic field in the optical frequency range on the nanometer scale, where the dimension of the optical field is less than the diffraction limit. Nano-optics overcomes the limitations of the diffraction limit and increases the detection limits and the sensitivity of optical measurement to the level of a single molecule. The near-field enhancement of localized surface plasmon resonance (LSPR) around plasmonic nanostructures is 1000 times more effective than non-concentrated light. In a localized optical near-field, matter in the vicinity of the functional plasmonic nanostructures can interact strongly with light.
This study involves several research topics that are related to plasmonic nano-optics. The ways in which plasmonic nanostructures enhance the interaction between light and matter and the mechanism for the coupling of light to plasmonic resonances are studied. Chapter 1 gives an overview of and a brief introduction to plasmonic nano-optics. In the following chapters, several research topics are described in detail.
In chapter 2, it is demonstrated that the resonance mode of a nanoantenna can shape the spectrum of the photoluminescence. The modulation of two-photon photoluminescence (TPPL) and single-photon photoluminescence (SPPL) by the resonance mode of the nanoantennas, including the super-radian mode, the sub-radian mode and higher order modes, is also demonstrated. It is shown that SPPL can serve as an ideal local broadband source to drive a directional nanoantenna.
In chapter 3, a plasmonic nanocircuit with a mode converter is used to convert the antisymmetric mode for light-matter interaction to and the symmetric mode for power delivery. This plasmonic transmission line and mode converter is a novel addition for future optical nanocircuits.
Chapter 4 details the design, fabrication, characterization and applications of two-dimensional plasmonic Doppler gratings (PDGs). PDGs is a 2D platform with broadband and manipulates resonance that depends on the azimuthal angle. PDGs can be easily designed and fabricated to fit the spectral window of interest. Application of PDGs as a powerful 2D platform for multi-color spectroscopy are demonstrated. The use of PDGs’ for index sensing is also demonstrated.
In chapter 5, the use of a Au-Pd-Au nanobrick for hydrogen sensing is demonstrated. The metal-metal-metal (MMM) structure of these nanobricks serves as an ultrasensitive nanoscale probe for hydrogen gas. The sensing mechanism works by turning the sandwiched layer Pd layer into Pd-H when hydrogen is absorbed. The material in the gap between the two gold layers changes lead to the charge-transfer plasmons (CTPs) are created. This increases the sensitivity of the nanobrick to hydrogen.
Chapter 6 presents a study on the valley polarization of the emission from two-dimensional Tungsten disulfide (WS2) materials. It is shown that excitation with energy that is slightly below the bandgap for multi-valleyed transition metal chalcogenides prevents the random redistribution of excited electrons and thereby greatly increases valley polarization at room temperature.
With the development of nano-technologies, optical measurement methods, numerical simulation methods and nanooptics become an emerging field and nanoscale and subwavelength footprints are possible. In recent years, the field of nano-optics has benefitted from increasing maturity of nanotechnology, modern microscopy and computer-numerical simulation. The pace of advances means that light generation has been perfected. It is the author’s hope that the work in this doctoral thesis will contribute to scientific research and the betterment of human life in the future.
Contents
中文摘要 2
Paper List 6
Contents 8
Table captions 11
Figure captions 12
Chapter 1 Introduction 24
1. Nanooptics and the history of the surface plasmon 24
2. Theory of plasmonics 27
3. Application of nano-optoelectronics 32
4. Typical optical setup in plasmonics 36
4.1 Dark-field scattering microscopy for a scattering spectrum 36
4.2 Confocal microscope for PL spectrum 37
Reference 40
Chapter 2 The Effect of Gold Nanoantenna Surface Plasmon Resonances on Photoluminescence 46
1. Introduction 46
1.1 Plasmonic optical nanoantenna 46
1.2 Single photon photoluminescence of gold nanostructures 47
1.3 Two photon photoluminescence in gold nanostructures 50
1.4 Photoluminescence via a nanoantenna’s plasmonic eigenmodes 51
1.5 Directional emission of nanoantenna 53
2. Results and discussion 55
2.1 Fabrication of nanostructures 55
2.2 The effect of resonance eigenmodes on the TPPL emission spectra 60
2.3 Effect of resonance modes on the excitation efficiency of the TPPL 65
2.4 Effect of a single gold nanorod on the SPPL excitation and emission spectra 66
2.5 SPPL driven Yagi-Uda antenna and Log-periodic antenna 71
3. Conclusion 75
Reference 77
Chapter 3 The promotion of a highly efficient light-matter interaction using a mode convertor that works in plasmonic optical nanocircuits 81
1. Introduction 81
1.1 Plasmonic waveguides 81
1.2 The modes in a two-wire transmission line 81
2. Results and discussion 82
3. Experimental details 90
3.1 Fabrication of the TWTL 90
3.2 Optical setup 90
4. Conclusion 98
Reference 100
Chapter 4 A Plasmonic Doppler Grating as an Azimuthal Angle-resolved Platform for Nanophotonic Applications 103
1. Introduction 103
1.1 Surface plasmon coupled grating surfaces 103
1.1 Plasmonic gratings for sensing 105
2. Experimental 106
2.1 Design and features of the PDG 106
2.2 Fabrication of a PDG 109
2.3 Optical characterization of a PDG 110
2.4 Numerical simulations for the PDG 112
3. Results and discussion 112
3.1 Optical response of a PDG 113
3.2 Color sorting using a PDG 119
3.3 Quantitative analysis of the azimuthal intensity distribution 122
3.4 Refractive index sensing using a PDG 123
3.5 Image Analysis and Fitting of the Intensity Profile 128
4. Conclusion 132
Reference 134
Chapter 5 The use of Bimetallic Au-Pd-Au Nanobricks for intra-particle Plasmon Coupling to allow Enhanced Hydrogen Sensing 139
1. Introduction 139
2. Experimental section 141
2.1 Synthesis and characterization of Au-Pd-Au nanobricks 141
2.2 Optical sensing of hydrogen gas. 148
2.3 FDTD simulation. 151
3. Results and discussion 152
4. Conclusion 159
Reference 160
Chapter 6 Robust valley polarization at room temperature in monolayer and bilayer WS2 163
1. Introduction 163
2. Experimental section 166
2.1 CVD synthesis of WS2 166
2.2 Measurement of polarization at room temperature 167
3. Results and Discussion 169
4. Conclusion 187
Reference 189
Conclusion 193

1. Rahmani, M., Jagadish, C.; Light–Matter interactions on the nanoscale. Beilstein J. Nanotechnol. 2018, 9, 2125-2127.
2. Stern, L., Desiatov, B., Goykhman, I., Levy, U.; Nanoscale light–matter interactions in atomic cladding waveguides. Nat. Commun. 2013, 4, 1548.
3. Novotny, L., Hecht, B., Principles of Nano-Optics. 2 ed., Cambridge University Press: Cambridge, 2012.
4. Scott, R. M.; Optical Engineering. Appl. Opt. 1962, 1 (4), 387-397.
5. Patsalas, P., Logothetidis, S.; Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films. J. Appl. Phys. 2001, 90 (9), 4725-4734.
6. Radloff, C., Halas, N. J.; Plasmonic Properties of Concentric Nanoshells. Nano Lett. 2004, 4 (7), 1323-1327.
7. de Nijs, B., Benz, F., Barrow, S. J., Sigle, D. O., Chikkaraddy, R., Palma, A., Carnegie, C., Kamp, M., Sundararaman, R., Narang, P., Scherman, O. A., Baumberg, J. J.; Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 2017, 8 (1), 994.
8. Wenger, J., Lenne, P.-F., Popov, E., Rigneault, H., Dintinger, J., Ebbesen, T. W.; Single molecule fluorescence in rectangular nano-apertures. Opt. Express 2005, 13 (18), 7035-7044.
9. Wood, A., Mathai, C. J., Gangopadhyay, K., Grant, S., Gangopadhyay, S.; Single-Molecule Surface Plasmon-Coupled Emission with Plasmonic Gratings. ACS Omega 2017, 2 (5), 2041-2045.
10. Zheludev N. I.; What diffraction limit? Nat. Mater. 2008, 7, 420.
11. Liu, W.-L., Lin, F.-C., Yang, Y.-C., Huang, C.-H., Gwo, S., Huang, M. H., Huang, J.-S.; The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale 2013, 5 (17), 7953-7962.
12. Brolo, A. G., Arctander, E., Gordon, R., Leathem, B., Kavanagh, K. L.; Nanohole-Enhanced Raman Scattering. Nano Lett. 2004, 4 (10), 2015-2018.
13. Demming, A. L., Festy, F., Richards, D.; Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering. J. Chem. Phys. 2005, 122 (18), 184716.
14. Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Müllen, K., Moerner, W. E.; Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654.
15. Dai, W.-H., Lin, F.-C., Huang, C.-B., Huang, J.-S.; Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Lett. 2014, 14 (7), 3881-3886.
16. Akimoto, T., Sasaki, S., Ikebukuro, K., Karube, I.; Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy. Appl. Opt. 1999, 38 (19), 4058-4064.
17. Lin, D., Huang, J.-S.; Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement. Opt. Express 2014, 22 (7), 7434-7445.
18. Yoo, D., Gurunatha, K. L., Choi, H.-K., Mohr, D. A., Ertsgaard, C. T., Gordon, R., Oh, S.-H.; Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. Nano Lett. 2018, 18 (6), 3637-3642.
19. Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., Gan, Q., Yu, Z., Zhu, J.; Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2 (4).
20. Chalabi, H., Schoen, D., Brongersma, M. L.; Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna. Nano Lett. 2014, 14 (3), 1374-1380.
21. See, K.-M., Lin, F.-C., Huang, J.-S.; Design and characterization of a plasmonic Doppler grating for azimuthal angle-resolved surface plasmon resonances. Nanoscale 2017, 9 (30), 10811-10819.
22. Liu, H.-W., Lin, F.-C., Lin, S.-W., Wu, J.-Y., Chou, B.-T., Lai, K.-J., Lin, S.-D., Huang, J.-S.; Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics. ACS Nano 2015, 9 (4), 3875-3886.
23. Wang, C.-Y., Chen, H.-Y., Sun, L., Chen, W.-L., Chang, Y.-M., Ahn, H., Li, X., Gwo, S.; Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nat. Commun. 2015, 6, 7734.
24. Chang, C.-W., Lin, F.-C., Chiu, C.-Y., Su, C.-Y., Huang, J.-S., Perng, T.-P., Yen, T.-J.; HNO3-Assisted Polyol Synthesis of Ultralarge Single-Crystalline Ag Microplates and Their Far Propagation Length of Surface Plasmon Polariton. ACS Appl. Mater. Interfaces 2014, 6 (14), 11791-11798.
25. García de Abajo, F. J.; Graphene Plasmonics: Challenges and Opportunities. ACS Photonics 2014, 1 (3), 135-152.
26. Naik, G. V., Boltasseva, A.; A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials 2011, 5 (1), 1-7.
27. Naik, G. V., Schroeder, J. L., Ni, X., Kildishev, A. V., Sands, T. D., Boltasseva, A.; Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2012, 2 (4), 478-489.
28. Kang, M., Saucer, T. W., Warren, M. V., Wu, J. H., Sun, H., Sih, V., Goldman, R. S.; Surface plasmon resonances of Ga nanoparticle arrays. Appl. Phys. Lett. 2012, 101 (8), 081905.
29. Ghosh, S., Saha, M., Dev Ashok, V., Dalal, B., De, S. K.; Tunable Surface Plasmon Resonance in Sn-Doped Zn–Cd–O Alloyed Nanocrystals. J. Phys. Chem. C 2015, 119 (2), 1180-1187.
30. McMahon, J. M., Schatz, G. C., Gray, S. K.; Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15 (15), 5415-5423.
31. Huang, J.-S., Callegari, V., Geisler, P., Brüning, C., Kern, J., Prangsma, J. C., Wu, X., Feichtner, T., Ziegler, J., Weinmann, P., Kamp, M., Forchel, A., Biagioni, P., Sennhauser, U., Hecht, B.; Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010, 1, 150.
32. Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M., Mulvaney, P.; Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249 (17), 1870-1901.
33. Jenkins, J. A., Wax, T. J., Zhao, J.; Seed-Mediated Synthesis of Gold Nanoparticles of Controlled Sizes To Demonstrate the Impact of Size on Optical Properties. J. Chem. Educ. 2017, 94 (8), 1090-1093.
34. Cao, C., Park, S., Sim, S. J.; Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase. J. Colloid Interface Sci. 2008, 322 (1), 152-157.
35. Jakab, A., Rosman, C., Khalavka, Y., Becker, J., Trügler, A., Hohenester, U., Sönnichsen, C.; Highly Sensitive Plasmonic Silver Nanorods. ACS Nano 2011, 5 (9), 6880-6885.
36. Iravani, S., Korbekandi, H., Mirmohammadi, S. V., Zolfaghari, B.; Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9 (6), 385-406.
37. Ng, K. C., Lin, F.-C., Yang, P.-W., Chuang, Y.-C., Chang, C.-K., Yeh, A.-H., Kuo, C.-S., Kao, C.-R., Liu, C.-C., Jeng, U. S., Huang, J.-S., Kuo, C.-H.; Fabrication of Bimetallic Au–Pd–Au Nanobricks as an Archetype of Robust Nanoplasmonic Sensors. Chem. Mater. 2018, 30 (1), 204-213.
38. Tittl, A., Yin, X., Giessen, H., Tian, X.-D., Tian, Z.-Q., Kremers, C., Chigrin, D. N., Liu, N.; Plasmonic Smart Dust for Probing Local Chemical Reactions. Nano Lett. 2013, 13 (4), 1816-1821.
39. Zhang, T., Lu, G., Shen, H., Shi, K., Jiang, Y., Xu, D., Gong, Q.; Photoluminescence of a single complex plasmonic nanoparticle. Sci. Rep. 2014, 4, 3867.
40. Wood, R. W.; On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proc. Phys. Soc. 1902, 18 (1), 269.
41. Garnett, J. C. M.; Colours in Metal Glasses and in Metallic Films. Proc. R. Soc. A 1904, 73 (488-496), 443-445.
42. Mie, G.; Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. (Berl.) 1908, 330 (3), 377-445.
43. Pines, D.; Collective Energy Losses in Solids. Rev. Mod. Phys. 1956, 28 (3), 184-198.
44. Ritchie, R. H.; Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106 (5), 874-881.
45. Hopfield, J. J.; Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958, 112 (5), 1555-1567.
46. Ritchie, R. H., Arakawa, E. T., Cowan, J. J., Hamm, R. N.; Surface-Plasmon Resonance Effect in Grating Diffraction. Phys. Rev. Lett. 1968, 21 (22), 1530-1533.
47. 邱國斌、蔡定平, 金屬表面電漿簡介. 物理雙月刊 2006, 28 (2), 472-485.
48. 吳民耀、劉威志, 表面電漿子理論與模擬. 物理雙月刊 2006, 28 (2), 486-496.
49. Khlebtsov, N. G., Dykman, L. A.; Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 2010, 111 (1), 1-35.
50. Babicheva, V. E., Zhukovsky, S. V., Ikhsanov, R. S., Protsenko, I. E., Smetanin, I. V., Uskov, A.; Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption. ACS Photonics 2015, 2 (8), 1039-1048.
51. Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C., Maier, S. A.; Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach. Nano Lett. 2011, 11 (7), 2835-2840.
52. Homola, J.; Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108 (2), 462-493.
53. Zhou, N., López-Puente, V., Wang, Q., Polavarapu, L., Pastoriza-Santos, I., Xu, Q.-H.; Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 2015, 5 (37), 29076-29097.
54. Peterson, A. W., Halter, M., Tona, A., Plant, A. L.; High resolution surface plasmon resonance imaging for single cells. BMC Cell Biology 2014, 15 (1), 35.
55. Liang, Z., Sun, J., Jiang, Y., Jiang, L., Chen, X.; Plasmonic Enhanced Optoelectronic Devices. Plasmonics 2014, 9 (4), 859-866.
56. Gu, X., Qiu, T., Zhang, W., Chu, P. K.; Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res. Lett. 2011, 6 (1), 199.
57. Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., García de Abajo, F. J., Pruneri, V., Altug, H.; Mid-infrared plasmonic biosensing with graphene. Science 2015, 349 (6244), 165.
58. Hung, Y.-T., Huang, C.-B., Huang, J.-S.; Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Opt. Express 2012, 20 (18), 20342-20355.
59. Boltasseva, A., Atwater, H. A.; Low-Loss Plasmonic Metamaterials. Science 2011, 331 (6015), 290.
60. Vasconcelos, T. L., Archanjo, B. S., Fragneaud, B., Oliveira, B. S., Riikonen, J., Li, C., Ribeiro, D. S., Rabelo, C., Rodrigues, W. N., Jorio, A., Achete, C. A., Cançado, L. G.; Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes. ACS Nano 2015, 9 (6), 6297-6304.
61. Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., Van Duyne, R. P.; SERS: Materials, applications, and the future. Mater. Today 2012, 15 (1), 16-25.
62. Urban, A. S., Carretero-Palacios, S., Lutich, A. A., Lohmüller, T., Feldmann, J., Jäckel, F.; Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale 2014, 6 (9), 4458-4474.
63. Shoji, T., Tsuboi, Y.; Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping. J. Phys. Chem. Lett. 2014, 5 (17), 2957-2967.
64. Hu, H., Duan, H., Yang, J. K. W., Shen, Z. X.; Plasmon-Modulated Photoluminescence of Individual Gold Nanostructures. ACS Nano 2012, 6 (11), 10147-10155.
65. Chen, W.-L., Lin, F.-C., Lee, Y.-Y., Li, F.-C., Chang, Y.-M., Huang, J.-S.; The Modulation Effect of Transverse, Antibonding, and Higher-Order Longitudinal Modes on the Two-Photon Photoluminescence of Gold Plasmonic Nanoantennas. ACS Nano 2014, 8 (9), 9053-9062.
66. See, K.-M., Lin, F.-C., Chen, T.-Y., Huang, Y.-X., Huang, C.-H., Yeşilyurt, A. T. M., Huang, J.-S.; Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas. Nano Lett. 2018, 18 (9), 6002-6008.
67. Kuo, C.-H., Chiang, T.-F., Chen, L.-J., Huang, M. H.; Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate. Langmuir 2004, 20 (18), 7820-7824.
68. Kuo, C.-H., Huang, M. H.; Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach. Langmuir 2005, 21 (5), 2012-2016.
69. Kuo, C. H., Chen, C. H., Huang, M. H.; Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17 (18), 3773-3780.
70. Nordlander, P., Oubre, C., Prodan, E., Li, K., Stockman, M. I.; Plasmon Hybridization in Nanoparticle Dimers. Nano Lett. 2004, 4 (5), 899-903.
71. Nayak, P. K., Lin, F.-C., Yeh, C.-H., Huang, J.-S., Chiu, P.-W.; Robust room temperature valley polarization in monolayer and bilayer WS2. Nanoscale 2016, 8 (11), 6035-6042.
72. Novotny, L., van Hulst, N.; Antennas for light. Nat. Photonics 2011, 5, 83.
73. Paolo, B., Jer-Shing, H., Bert, H.; Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75 (2), 024402.
74. Koh, A. L., Bao, K., Khan, I., Smith, W. E., Kothleitner, G., Nordlander, P., Maier, S. A., McComb, D. W.; Electron Energy-Loss Spectroscopy (EELS) of Surface Plasmons in Single Silver Nanoparticles and Dimers: Influence of Beam Damage and Mapping of Dark Modes. ACS Nano 2009, 3 (10), 3015-3022.
75. Huang, J.-S., Kern, J., Geisler, P., Weinmann, P., Kamp, M., Forchel, A., Biagioni, P., Hecht, B.; Mode Imaging and Selection in Strongly Coupled Nanoantennas. Nano Lett. 2010, 10 (6), 2105-2110.
76. Davis, T. J., Gómez, D. E., Vernon, K. C.; Simple Model for the Hybridization of Surface Plasmon Resonances in Metallic Nanoparticles. Nano Lett. 2010, 10 (7), 2618-2625.
77. Dorfmüller, J., Vogelgesang, R., Khunsin, W., Rockstuhl, C., Etrich, C., Kern, K.; Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory. Nano Lett. 2010, 10 (9), 3596-3603.
78. Alber, I., Sigle, W., Müller, S., Neumann, R., Picht, O., Rauber, M., van Aken, P. A., Toimil-Molares, M. E.; Visualization of Multipolar Longitudinal and Transversal Surface Plasmon Modes in Nanowire Dimers. ACS Nano 2011, 5 (12), 9845-9853.
79. Taminiau, T. H., Stefani, F. D., van Hulst, N. F.; Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes. Nano Lett. 2011, 11 (3), 1020-1024.
80. Chu, M.-W., Myroshnychenko, V., Chen, C. H., Deng, J.-P., Mou, C.-Y., García de Abajo, F. J.; Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam. Nano Lett. 2009, 9 (1), 399-404.
81. Dorfmüller, J., Vogelgesang, R., Weitz, R. T., Rockstuhl, C., Etrich, C., Pertsch, T., Lederer, F., Kern, K.; Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures. Nano Lett. 2009, 9 (6), 2372-2377.
82. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S., Moerner, W. E.; Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas. Phys. Rev. Lett. 2005, 94 (1), 017402.
83. Gallinet, B., Martin, O. J. F.; Influence of Electromagnetic Interactions on the Line Shape of Plasmonic Fano Resonances. ACS Nano 2011, 5 (11), 8999-9008.
84. Ye, J., Wen, F., Sobhani, H., Lassiter, J. B., Van Dorpe, P., Nordlander, P., Halas, N. J.; Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Lett.2012, 12 (3), 1660-1667.
85. Mooradian, A.; Photoluminescence of Metals. Phys. Rev. Lett. 1969, 22 (5), 185-187.
86. Boyd, G. T., Yu, Z. H., Shen, Y. R.; Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 1986, 33 (12), 7923-7936.
87. Fang, Y., Chang, W.-S., Willingham, B., Swanglap, P., Dominguez-Medina, S., Link, S.; Plasmon Emission Quantum Yield of Single Gold Nanorods as a Function of Aspect Ratio. ACS Nano 2012, 6 (8), 7177-7184.
88. Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A., Orrit, M.; Luminescence Quantum Yield of Single Gold Nanorods. Nano Lett. 2012, 12 (8), 4385-4391.
89. Huang, J., Yu, P., Yuan, C.-T., Ko, H.-C., Tang, J., Hsieh, T.-S.; In Single-particle studies of the plasmonic fluorescence in gold nanocubes, SPIE: 2012, p 7.
90. Dulkeith, E., Niedereichholz, T., Klar, T. A., Feldmann, J., von Plessen, G., Gittins, D. I., Mayya, K. S., Caruso, F.; Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 2004, 70 (20), 205424.
91. Bouhelier, A., Bachelot, R., Lerondel, G., Kostcheev, S., Royer, P., Wiederrecht, G. P.; Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods. Phys.Rev. Lett. 2005, 95 (26), 267405.
92. Beversluis, M. R., Bouhelier, A., Novotny, L.; Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 2003, 68 (11), 115433.
93. Mohamed, M. B., Volkov, V., Link, S., El-Sayed, M. A.; The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 2000, 317 (6), 517-523.
94. Biagioni, P., Celebrano, M., Savoini, M., Grancini, G., Brida, D., Mátéfi-Tempfli, S., Mátéfi-Tempfli, M., Duò, L., Hecht, B., Cerullo, G., Finazzi, M.; Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration. Phys. Rev. B 2009, 80 (4), 045411.
95. Wissert, M. D., Ilin, K. S., Siegel, M., Lemmer, U., Eisler, H.-J.; Coupled Nanoantenna Plasmon Resonance Spectra from Two-Photon Laser Excitation. Nano Lett. 2010, 10 (10), 4161-4165.
96. Castro-Lopez, M., Brinks, D., Sapienza, R., van Hulst, N. F.; Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas. Nano Lett. 2011, 11 (11), 4674-4678.
97. Wissert, M. D., Moosmann, C., Ilin, K. S., Siegel, M., Lemmer, U., Eisler, H.-J.; Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence. Opt. Express 2011, 19 (4), 3686-3693.
98. Biagioni, P., Brida, D., Huang, J.-S., Kern, J., Duò, L., Hecht, B., Finazzi, M., Cerullo, G.; Dynamics of Four-Photon Photoluminescence in Gold Nanoantennas. Nano Lett. 2012, 12 (6), 2941-2947.
99. Schwab, P. M., Moosmann, C., Wissert, M. D., Schmidt, E. W. G., Ilin, K. S., Siegel, M., Lemmer, U., Eisler, H.-J.; Linear and Nonlinear Optical Characterization of Aluminum Nanoantennas. Nano Lett. 2013, 13 (4), 1535-1540.
100. Guan, Z., Gao, N., Jiang, X.-F., Yuan, P., Han, F., Xu, Q.-H.; Huge Enhancement in Two-Photon Photoluminescence of Au Nanoparticle Clusters Revealed by Single-Particle Spectroscopy. J. Am. Chem. Soc. 2013, 135 (19), 7272-7277.
101. Ghenuche, P., Cherukulappurath, S., Taminiau, T. H., van Hulst, N. F., Quidant, R.; Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas. Phys. Rev. Lett. 2008, 101 (11), 116805.
102. Liao, H., Nehl, C. L., Hafner, J. H.; Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 2006, 1 (2), 201-208.
103. Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., van Hulst, N. F.; Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science 2010, 329 (5994), 930.
104. Yao, W., Liu, S., Liao, H., Li, Z., Sun, C., Chen, J., Gong, Q.; Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna. Nano Lett. 2015, 15 (5), 3115-3121.
105. Aouani, H., Mahboub, O., Devaux, E., Rigneault, H., Ebbesen, T. W., Wenger, J.; Plasmonic Antennas for Directional Sorting of Fluorescence Emission. Nano Lett. 2011, 11 (6), 2400-2406.
106. Pellegrini, G., Mattei, G., Mazzoldi, P.; Light Extraction with Dielectric Nanoantenna Arrays. ACS Nano 2009, 3 (9), 2715-2721.
107. Vaskin, A., Bohn, J., Chong, K. E., Bucher, T., Zilk, M., Choi, D.-Y., Neshev, D. N., Kivshar, Y. S., Pertsch, T., Staude, I.; Directional and Spectral Shaping of Light Emission with Mie-Resonant Silicon Nanoantenna Arrays. ACS Photonics 2018, 5 (4), 1359-1364.
108. Hasan, S. B., Lederer, F., Rockstuhl, C.; Nonlinear plasmonic antennas. Mater. Today 2014, 17 (10), 478-485.
109. Dregely, D., Taubert, R., Dorfmüller, J., Vogelgesang, R., Kern, K., Giessen, H.; 3D optical Yagi–Uda nanoantenna array. Nat. Commun. 2011, 2, 267.
110. Blanchard, R., Boriskina, S. V., Genevet, P., Kats, M. A., Tetienne, J.-P., Yu, N., Scully, M. O., Dal Negro, L., Capasso, F.; Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point. Opt. Express 2011, 19 (22), 22113-22124.
111. Maksymov Ivan, S., Staude, I., Miroshnichenko Andrey, E., Kivshar Yuri, S.; Optical Yagi-Uda nanoantennas. Nanophotonics, 2012, Vol. 1, p 65.
112. Nikoobakht, B., El-Sayed, M. A.; Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15 (10), 1957-1962.
113. Guo, Z., Zhang, Y., DuanMu, Y., Xu, L., Xie, S., Gu, N.; Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278 (1), 33-38.
114. Yagi, H.; Beam Transmission Of Ultra Short Waves. Proceedings of the IEEE 1997, 85 (11), 1864-1874.
115. Holger, F. H., Terukazu, K., Yutaka, K.; Design parameters for a nano-optical Yagi–Uda antenna. New J. Phys. 2007, 9 (7), 217.
116. Li, J., Salandrino, A., Engheta, N.; Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain. Phys. Rev. B 2007, 76 (24), 245403.
117. Maksymov, I. S., Miroshnichenko, A. E., Kivshar, Y. S.; Actively tunable bistable optical Yagi-Uda nanoantenna. Opt. Express 2012, 20 (8), 8929-8938.
118. Wang, Y., Abb, M., Boden, S. A., Aizpurua, J., de Groot, C. H., Muskens, O. L.; Ultrafast Nonlinear Control of Progressively Loaded, Single Plasmonic Nanoantennas Fabricated Using Helium Ion Milling. Nano Lett. 2013, 13 (11), 5647-5653.
119. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Ebbesen, T. W.; Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves. Phy. Rev. Lett. 2005, 95 (4), 046802.
120. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y., Ebbesen, T. W.; Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 508.
121. Huang, J.-S., Feichtner, T., Biagioni, P., Hecht, B.; Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit. Nano Lett. 2009, 9 (5), 1897-1902.
122. Wen, J., Romanov, S., Peschel, U.; Excitation of plasmonic gap waveguides by nanoantennas. Opt. Express 2009, 17 (8), 5925-5932.
123. Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., Brongersma, M. L.; Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193.
124. Chang, D. E., Sørensen, A. S., Hemmer, P. R., Lukin, M. D.; Quantum Optics with Surface Plasmons. Phys. Rev. Lett. 2006, 97 (5), 053002.
125. Chang, D. E., Sørensen, A. S., Demler, E. A., Lukin, M. D.; A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 2007, 3, 807.
126. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., Kobayashi, T.; Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 1997, 22 (7), 475-477.
127. Verhagen, E., Spasenović, M., Polman, A., Kuipers, L.; Nanowire Plasmon Excitation by Adiabatic Mode Transformation. Phys. Rev. Lett. 2009, 102 (20), 203904.
128. Zhang, S., Wei, H., Bao, K., Håkanson, U., Halas, N. J., Nordlander, P., Xu, H.; Chiral Surface Plasmon Polaritons on Metallic Nanowires. Phys. Rev. Lett. 2011, 107 (9), 096801.
129. Krenz, P. M., Olmon, R. L., Lail, B. A., Raschke, M. B., Boreman, G. D.; Near-field measurement of infrared coplanar strip transmission line attenuation and propagation constants. Opt. Express 2010, 18 (21), 21678-21686.
130. Schnell, M., Alonso-González, P., Arzubiaga, L., Casanova, F., Hueso, L. E., Chuvilin, A., Hillenbrand, R.; Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photonics 2011, 5, 283.
131. Choo, H., Kim, M.-K., Staffaroni, M., Seok, T. J., Bokor, J., Cabrini, S., Schuck, P. J., Wu, M. C., Yablonovitch, E.; Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics 2012, 6, 838.
132. Geisler, P., Razinskas, G., Krauss, E., Wu, X.-F., Rewitz, C., Tuchscherer, P., Goetz, S., Huang, C.-B., Brixner, T., Hecht, B.; Multimode Plasmon Excitation and In Situ Analysis in Top-Down Fabricated Nanocircuits. Phys. Rev. Lett. 2013, 111 (18), 183901.
133. Sun, S., Chen, H.-T., Zheng, W.-J., Guo, G.-Y.; Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express 2013, 21 (12), 14591-14605.
134. Ly-Gagnon, D.-S., Balram Krishna, C., White Justin, S., Wahl, P., Brongersma Mark, L., Miller David, A. B.; Routing and photodetection in subwavelength plasmonic slot waveguides. In Nanophotonics, 2012, Vol. 1, p 9.
135. Bergman, D. J., Stockman, M. I.; Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Phys. Rev. Lett. 2003, 90 (2), 027402.
136. Noginov, M. A., Podolskiy, V. A., Zhu, G., Mayy, M., Bahoura, M., Adegoke, J. A., Ritzo, B. A., Reynolds, K.; Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 2008, 16 (2), 1385-1392.
137. Gather, M. C., Meerholz, K., Danz, N., Leosson, K.; Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat. Photonics 2010, 4, 457.
138. Berini, P., De Leon, I.; Surface plasmon–polariton amplifiers and lasers. Nat. Photonics 2011, 6, 16.
139. Alù, A., Engheta, N.; Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas. Phys. Rev. Lett. 2010, 104 (21), 213902.
140. Castro, J. M., Geraghty, D. F., Honkanen, S., Greiner, C. M., Iazikov, D., Mossberg, T. W.; Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings. Opt. Express 2005, 13 (11), 4180-4184.
141. Kats, M. A., Blanchard, R., Genevet, P., Yang, Z., Qazilbash, M. M., Basov, D. N., Ramanathan, S., Capasso, F.; Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 2013, 38 (3), 368-370.
142. Chen, Y. G., Kao, T. S., Ng, B., Li, X., Luo, X. G., Luk'yanchuk, B., Maier, S. A., Hong, M. H.; Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 2013, 21 (11), 13691-13698.
143. Dickson, W., Wurtz, G. A., Evans, P. R., Pollard, R. J., Zayats, A. V.; Electronically Controlled Surface Plasmon Dispersion and Optical Transmission through Metallic Hole Arrays Using Liquid Crystal. Nano Lett. 2008, 8 (1), 281-286.
144. Barnes, W. L., Dereux, A., Ebbesen, T. W.; Surface plasmon subwavelength optics. Nature 2003, 424, 824.
145. Raether, E. K. a. H.; Radiative Decay of Non
Radiative Surface Plasmon Excited by Light. Z. Naturforsch., A: Astrophys. Phys. Phys. Chem. 1968, 23, 2135-2136.
146. Otto, A.; Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A 1968, 216 (4), 398-410.
147. Schröter, U., Heitmann, D.; Surface-plasmon-enhanced transmission through metallic gratings. Phys. Rev. B 1998, 58 (23), 15419-15421.
148. Renger, J., Quidant, R., van Hulst, N., Palomba, S., Novotny, L.; Free-Space Excitation of Propagating Surface Plasmon Polaritons by Nonlinear Four-Wave Mixing. Phys. Rev. Lett. 2009, 103 (26), 266802.
149. Lee, K.-L., Chen, P.-W., Wu, S.-H., Huang, J.-B., Yang, S.-Y., Wei, P.-K.; Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films. ACS Nano 2012, 6 (4), 2931-2939.
150. Sobhani, A., Knight, M. W., Wang, Y., Zheng, B., King, N. S., Brown, L. V., Fang, Z., Nordlander, P., Halas, N. J.; Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643.
151. Zheng, B. Y., Wang, Y., Nordlander, P., Halas, N. J.; Color-Selective and CMOS-Compatible Photodetection Based on Aluminum Plasmonics. Adv. Mater. 2014, 26 (36), 6318-6323.
152. López-Tejeira, F., Rodrigo, S. G., Martín-Moreno, L., García-Vidal, F. J., Devaux, E., Ebbesen, T. W., Krenn, J. R., Radko, I. P., Bozhevolnyi, S. I., González, M. U., Weeber, J. C., Dereux, A.; Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 2007, 3, 324.
153. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., Wolff, P. A.; Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667.
154. Collin, S., Pardo, F., Teissier, R., Pelouard, J. L.; Strong discontinuities in the complex photonic band structure of transmission metallic gratings. Phys. Rev. B 2001, 63 (3), 033107.
155. Yeh, W.-H., Hillier, A. C.; Use of Dispersion Imaging for Grating-Coupled Surface Plasmon Resonance Sensing of Multilayer Langmuir–Blodgett Films. Anal. Chem. 2013, 85 (8), 4080-4086.
156. Laux, E., Genet, C., Skauli, T., Ebbesen, T. W.; Plasmonic photon sorters for spectral and polarimetric imaging. Nat. Photonics 2008, 2, 161.
157. Xu, T., Wu, Y.-K., Luo, X., Guo, L. J.; Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 2010, 1, 59.
158. Zeng, B., Gao, Y., Bartoli, F. J.; Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters. Sci. Rep. 2013, 3, 2840.
159. Andrade, G. F. S., Min, Q., Gordon, R., Brolo, A. G.; Surface-Enhanced Resonance Raman Scattering on Gold Concentric Rings: Polarization Dependence and Intensity Fluctuations. J. Phys. Chem. C 2012, 116 (4), 2672-2676.
160. Jiang, Y., Wang, H.-Y., Wang, H., Gao, B.-R., Hao, Y.-w., Jin, Y., Chen, Q.-D., Sun, H.-B.; Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films. J. Phys. Chem. C 2011, 115 (25), 12636-12642.
161. Aouani, H., Mahboub, O., Bonod, N., Devaux, E., Popov, E., Rigneault, H., Ebbesen, T. W., Wenger, J.; Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations. Nano Lett. 2011, 11 (2), 637-644.
162. Fu, Y., Hu, X., Lu, C., Yue, S., Yang, H., Gong, Q.; All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides. Nano Lett. 2012, 12 (11), 5784-5790.
163. Isailovic, D., Li, H.-W., Phillips, G. J., Yeung, E. S.; High-Throughput Single-Cell Fluorescence Spectroscopy. Appl. Spectrosc. 2005, 59 (2), 221-226.
164. Webb, M. R., LaFratta, C. N., Walt, D. R.; Chromatically Resolved Optical Microscope (CROMoscope): A Grating-Based Instrument for Spectral Imaging. Anal. Chem. 2009, 81 (17), 7309-7313.
165. Goda, K., Tsia, K. K., Jalali, B.; Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 2009, 458, 1145.
166. Henzie, J., Lee, J., Lee, M. H., Hasan, W., Odom, T. W.; Nanofabrication of Plasmonic Structures. Annu. Rev. Phys. 2009, 60 (1), 147-165.
167. Rej, S., Wang, H.-J., Huang, M.-X., Hsu, S.-C., Tan, C.-S., Lin, F.-C., Huang, J.-S., Huang, M. H.; Facet-dependent optical properties of Pd–Cu2O core–shell nanocubes and octahedra. Nanoscale 2015, 7 (25), 11135-11141.
168. Kretschmann, E. R., H.; Radiative Decay of Non Radiative Surface Plasmon Excited by Light. Z. Naturforsch A 1968, 23a, 2135-2136.
169. Otto, A.; Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Z. Phys. 1968, 216, 398-410.
170. Vo-Dinh, T., Wang, H.-N., Scaffidi, J.; Plasmonic nanoprobes for SERS biosensing and bioimaging. J. Biophotonics 2010, 3 (0), 89-102.
171. Wadell, C., Syrenova, S., Langhammer, C.; Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides. ACS Nano 2014, 8 (12), 11925-11940.
172. Joshi, G. K., Deitz-McElyea, S., Johnson, M., Mali, S., Korc, M., Sardar, R.; Highly Specific Plasmonic Biosensors for Ultrasensitive MicroRNA Detection in Plasma from Pancreatic Cancer Patients. Nano Lett. 2014, 14 (12), 6955-6963.
173. Brandl, D. W., Mirin, N. A., Nordlander, P.; Plasmon Modes of Nanosphere Trimers and Quadrumers. J. Phys. Chem. B 2006, 110 (25), 12302-12310.
174. Derrien, T. J. Y., Koter, R., Krüger, J., Höhm, S., Rosenfeld, A., Bonse, J.; Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water. J. Appl. Phys. 2014, 116 (7), 074902.
175. Nishijima, Y., Rosa, L., Juodkazis, S.; Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Opt. Express 2012, 20 (10), 11466-11477.
176. Oh, Y., Lim, J. W., Kim, J. G., Wang, H., Kang, B.-H., Park, Y. W., Kim, H., Jang, Y. J., Kim, J., Kim, D. H., Ju, B.-K.; Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency. ACS Nano 2016, 10 (11), 10143-10151.
177. Valsecchi, C., Brolo, A. G.; Periodic Metallic Nanostructures as Plasmonic Chemical Sensors. Langmuir 2013, 29 (19), 5638-5649.
178. Wang, H.; Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Sci. Rep. 2018, 8 (1), 9589.
179. Wu, D., Liu, Y., Li, R., Chen, L., Ma, R., Liu, C., Ye, H.; Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. Nanoscale Res. Lett. 2016, 11 (1), 483.
180. Blanchard-Dionne, A. P., Guyot, L., Patskovsky, S., Gordon, R., Meunier, M.; Intensity based surface plasmon resonance sensor using a nanohole rectangular array. Opt. Express 2011, 19 (16), 15041-15046.
181. Hsiao, V. K. S., Zheng, Y. B., Juluri, B. K., Huang, T. J.; Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals. Adv. Mater. 2008, 20 (18), 3528-3532.
182. Dintinger, J., Klein, S., Ebbesen, T. W.; Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching. Adv. Mater. 2006, 18 (10), 1267-1270.
183. Gehan, H., Mangeney, C., Aubard, J., Lévi, G., Hohenau, A., Krenn, J. R., Lacaze, E., Félidj, N.; Design and Optical Properties of Active Polymer-Coated Plasmonic Nanostructures. J. Phys.Chem. Lett. 2011, 2 (8), 926-931.
184. Stockhausen, V., Martin, P., Ghilane, J., Leroux, Y., Randriamahazaka, H., Grand, J., Felidj, N., Lacroix, J. C.; Giant Plasmon Resonance Shift Using Poly(3,4-ethylenedioxythiophene) Electrochemical Switching. J. Am. Chem. Soc. 2010, 132 (30), 10224-10226.
185. Schaming, D., Nguyen, V.-Q., Martin, P., Lacroix, J.-C.; Tunable Plasmon Resonance of Gold Nanoparticles Functionalized by Electroactive Bisthienylbenzene Oligomers or Polythiophene. J. Phys. Chem. C 2014, 118 (43), 25158-25166.
186. Yi, F., Shim, E., Zhu, A. Y., Zhu, H., Reed, J. C., Cubukcu, E.; Voltage tuning of plasmonic absorbers by indium tin oxide. Appl. Phys. Lett. 2013, 102 (22), 221102.
187. Garcia, G., Buonsanti, R., Runnerstrom, E. L., Mendelsberg, R. J., Llordes, A., Anders, A., Richardson, T. J., Milliron, D. J.; Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals. Nano Lett. 2011, 11 (10), 4415-4420.
188. Feigenbaum, E., Diest, K., Atwater, H. A.; Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies. Nano Lett. 2010, 10 (6), 2111-2116.
189. Brown, A. M., Sheldon, M. T., Atwater, H. A.; Electrochemical Tuning of the Dielectric Function of Au Nanoparticles. ACS Photonics 2015, 2 (4), 459-464.
190. Naik, G. V., Shalaev, V. M., Boltasseva, A.; Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25 (24), 3264-3294.
191. Koohyar, F., Kiani, F., Sharifi, S., Sharifirad, M., Rahmanpour, S. H.; Study on the Change of Refractive Index on Mixing, Excess Molar Volume and Viscosity Deviation for Aqueous Solution of Methanol, Ethanol, Ethylene Glycol, 1-Propanol and 1, 2, 3-Propantriol at T = 292.15 K and Atmospheric Pressure. Res. J. App. Sci. Eng. Technol. 2012, 4, 3095-3101.
192. Jose V. H., R. B.; Refractive Indices, Densities and Excess Molar Volumes of Monoalcohols + Water J. Solution Chem. 2006, 35, 1315-1328.
193. Jiménez Riobóo, R. J., Philipp, M., Ramos, M. A., Krüger, J. K.; Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions. Eur. Phys. J. E 2009, 30, 19-26.
194. Zhao, Y., Zhu, Y.; Graphene-based hybrid films for plasmonic sensing. Nanoscale 2015, 7 (35), 14561-14576.
195. Moos, R.; A brief overview on automotive exhaust gas sensors based on electroceramics. International Journal of Applied Ceramic Technology 2005, 2 (5), 401-413.
196. Wang, L. L., Dou, H. M., Lou, Z., Zhang, T.; Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 2013, 5 (7), 2686-2691.
197. Hubert, T., Boon-Brett, L., Black, G., Banach, U.; Hydrogen sensors - A review. Sensors and Actuators B-Chemical 2011, 157 (2), 329-352.
198. Homola, J., Yee, S. S., Gauglitz, G.; Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical 1999, 54 (1-2), 3-15.
199. Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., Nuzzo, R. G.; Nanostructured plasmonic sensors. Chem. Rev. 2008, 108 (2), 494-521.
200. Ly, N., Foley, K., Tao, N. J.; Integrated label-free protein detection and separation in real time using confined surface plasmon resonance imaging. Anal. Chem. 2007, 79 (6), 2546-2551.
201. Willets, K. A., Van Duyne, R. P.; Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. 2007, 58, 267-297.
202. Halas, N. J., Lal, S., Chang, W. S., Link, S., Nordlander, P.; Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111 (6), 3913-3961.
203. Chung, T., Lee, S. Y., Song, E. Y., Chun, H., Lee, B.; Plasmonic Nanostructures for Nano-Scale Bio-Sensing. Sensors 2011, 11 (11), 10907-10929.
204. Ghosh, S. K., Nath, S., Kundu, S., Esumi, K., Pal, T.; Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J. Phys. Chem. B 2004, 108 (37), 13963-13971.
205. Hutter, E., Fendler, J. H.; Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16 (19), 1685-1706.
206. Li, B., Gu, T., Ming, T., Wang, J., Wang, P., Wang, J., Yu, J. C.; (Gold Core)@(Ceria Shell) Nanostructures for Plasmon-Enhanced Catalytic Reactions under Visible Light. ACS Nano 2014, 8 (8), 8152-8162.
207. Khatua, S., Orrit, M.; Probing, Sensing, and Fluorescence Enhancement with Single Gold Nanorods. J. Phys. Chem. Lett. 2014, 5 (17), 3000-3006.
208. Shi, X., Ji, Y., Hou, S., Liu, W., Zhang, H., Wen, T., Yan, J., Song, M., Hu, Z., Wu, X.; Plasmon Enhancement Effect in Au Gold Nanorods@Cu2O Core Shell Nanostructures and Their Use in Probing Defect States. Langmuir 2015, 31 (4), 1537-1546.
209. Sharma, M., Pudasaini, P. R., Ruiz-Zepeda, F., Vinogradova, E., Ayon, A. A.; Plasmonic Effects of Au/Ag Bimetallic Multispiked Nanoparticles for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2014, 6 (17), 15472-15479.
210. Larsson, E. M., Langhammer, C., Zoric, I., Kasemo, B.; Nanoplasmonic Probes of Catalytic Reactions. Science 2009, 326 (5956), 1091-1094.
211. Langhammer, C., Larsson, E. M., Kasemo, B., Zoric, I.; Indirect Nanoplasmonic Sensing: Ultrasensitive Experimental Platform for Nanomaterials Science and Optical Nanocalorimetry. Nano Lett. 2010, 10 (9), 3529-3538.
212. Langhammer, C., Larsson, E. M.; Nanoplasmonic In Situ Spectroscopy for Catalysis Applications. ACS Catal. 2012, 2 (9), 2036-2045.
213. Liu, N., Tang, M. L., Hentschel, M., Giessen, H., Alivisatos, A. P.; Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10 (8), 631-636.
214. Syrenova, S., Wadell, C., Nugroho, F. A. A., Gschneidtner, T. A., Fernandez, Y. A. D., Nalin, G., Switlik, D., Westerlund, F., Antosiewicz, T. J., Zhdanov, V. P., Moth-Poulsen, K., Langhammer, C.; Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat. Mater. 2015, 14 (12), 1236-1244.
215. Koel, B. E., Sellidj, A., Paffett, M. T.; Ultrathin films of Pd on Au(111): Evidence for surface alloy formation. Phys. Rev. B 1992, 46 (12), 7846-7856.
216. Syrenova, S., Wadell, C., Nugroho, F. A. A., Gschneidtner, T. A., Diaz Fernandez, Y. A., Nalin, G., Świtlik, D., Westerlund, F., Antosiewicz, T. J., Zhdanov, V. P., Moth-Poulsen, K., Langhammer, C.; Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat. Mater. 2015, 14, 1236.
217. Fukuhara, M.; Lattice expansion of nanoscale compound particles. Phys. Lett. A 2003, 313 (5), 427-430.
218. Carcassi, M. N., Fineschi, F.; Deflagrations of H2-air and CH4-air lean mixtures in a vented multi-compartment environment. Energy 2005, 30 (8), 1439-1451.
219. Langhammer, C., Larsson, E. M., Zhdanov, V. P., Zoric, I.; Asymmetric Hysteresis in Nanoscopic Single-Metal Hydrides: Palladium Nanorings. J. Phys. Chem. C 2012, 116 (40), 21201-21207.
220. Johnson, P. B., Christy, R. W.; Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6 (12), 4370-4379.
221. Johnson, P., Christy, R.; Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 1974, 9 (12), 5056-5070.
222. Bevenot, X., Trouillet, A., Veillas, C., Gagnaire, H., Clement, M.; Surface plasmon resonance hydrogen sensor using an optical fibre. Measurement Science and Technology 2002, 13 (1), 118-124.
223. Alu, A., Engheta, N.; Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat. Photonics 2008, 2 (5), 307-310.
224. Alu, A., Engheta, N.; Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 2008, 101 (4).
225. Schnell, M., Garcia-Etxarri, A., Huber, A. J., Crozier, K., Aizpurua, J., Hillenbrand, R.; Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 2009, 3 (5), 287-291.
226. Large, N., Abb, M., Aizpurua, J., Muskens, O. L.; Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches. Nano Lett. 2010, 10 (5), 1741-1746.
227. Wen, F. F., Zhang, Y., Gottheim, S., King, N. S., Zhang, Y., Nordlander, P., Halas, N. J.; Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. ACS Nano 2015, 9 (6), 6428-6435.
228. Tittl, A., Yin, X. H., Giessen, H., Tian, X. D., Tian, Z. Q., Kremers, C., Chigrin, D. N., Liu, N.; Plasmonic Smart Dust for Probing Local Chemical Reactions. Nano Letters 2013, 13 (4), 1816-1821.
229. Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F.; Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105 (13), 136805.
230. Zhu, B., Zeng, H., Dai, J., Gong, Z., Cui, X.; Anomalously robust valley polarization and valley coherence in bilayer WS2. ‎Proc. Natl. Acad. Sci. 2014, 111 (32), 11606.
231. Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X.; Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490.
232. Kumar, N., He, J., He, D., Wang, Y., Zhao, H.; Valley and spin dynamics in MoSe2 two-dimensional crystals. Nanoscale 2014, 6 (21), 12690-12695.
233. Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.; Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108 (19), 196802.
234. Zhu, Z., Collaudin, A., Fauqué, B., Kang, W., Behnia, K.; Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 2011, 8, 89.
235. Zhu, Z. Y., Cheng, Y. C., Schwingenschlögl, U.; Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84 (15), 153402.
236. Zeng, H., Liu, G.-B., Dai, J., Yan, Y., Zhu, B., He, R., Xie, L., Xu, S., Chen, X., Yao, W., Cui, X.; Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608.
237. Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., Zhang, H.; The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263.
238. Elías, A. L., Perea-López, N., Castro-Beltrán, A., Berkdemir, A., Lv, R., Feng, S., Long, A. D., Hayashi, T., Kim, Y. A., Endo, M., Gutiérrez, H. R., Pradhan, N. R., Balicas, L., Mallouk, T. E., López-Urías, F., Terrones, H., Terrones, M.; Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers. ACS Nano 2013, 7 (6), 5235-5242.
239. Gutiérrez, H. R., Perea-López, N., Elías, A. L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V. H., Terrones, H., Terrones, M.; Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 2013, 13 (8), 3447-3454.
240. Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., Heinz, T. F., Hong, S. S., Huang, J., Ismach, A. F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V. V., Robinson, R. D., Ruoff, R. S., Salahuddin, S., Shan, J., Shi, L., Spencer, M. G., Terrones, M., Windl, W., Goldberger, J. E.; Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7 (4), 2898-2926.
241. Nayak, P. K., Yeh, C.-H., Chen, Y.-C., Chiu, P.-W.; Layer-Dependent Optical Conductivity in Atomic Thin WS2 by Reflection Contrast Spectroscopy. ACS Appl. Mater. Interfaces 2014, 6 (18), 16020-16026.
242. Xiao, D., Chang, M.-C., Niu, Q.; Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82 (3), 1959-2007.
243. Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., Feng, J.; Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
244. Yao, W., Xiao, D., Niu, Q.; Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 2008, 77 (23), 235406.
245. Mak, K. F., He, K., Shan, J., Heinz, T. F.; Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494.
246. Jiang, T., Liu, H., Huang, D., Zhang, S., Li, Y., Gong, X., Shen, Y.-R., Liu, W.-T., Wu, S.; Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825.
247. Wu, S., Ross, J. S., Liu, G.-B., Aivazian, G., Jones, A., Fei, Z., Zhu, W., Xiao, D., Yao, W., Cobden, D., Xu, X.; Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149.
248. Jones, A. M., Yu, H., Ghimire, N. J., Wu, S., Aivazian, G., Ross, J. S., Zhao, B., Yan, J., Mandrus, D. G., Xiao, D., Yao, W., Xu, X.; Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634.
249. Singh, A., Moody, G., Wu, S., Wu, Y., Ghimire, N. J., Yan, J., Mandrus, D. G., Xu, X., Li, X.; Coherent Electronic Coupling in Atomically Thin MoSe2. Phys. Rev. Lett. 2014, 112 (21), 216804.
250. Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., Ryu, S.; Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695-2700.
251. Najmaei, S., Liu, Z., Ajayan, P. M., Lou, J.,;Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 2012, 100 (1), 013106.
252. Berkdemir, A., Gutiérrez, H. R., Botello-Méndez, A. R., Perea-López, N., Elías, A. L., Chia, C.-I., Wang, B., Crespi, V. H., López-Urías, F., Charlier, J.-C., Terrones, H., Terrones, M.; Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755.
253. Ramakrishna Matte, H. S. S., Gomathi, A., Manna, A. K., Late, D. J., Datta, R., Pati, S. K., Rao, C. N. R.; MoS2 and WS2 Analogues of Graphene. Angew. Chem. Int. Ed. 2010, 49 (24), 4059-4062.
254. Wu, S., Huang, C., Aivazian, G., Ross, J. S., Cobden, D. H., Xu, X.; Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano 2013, 7 (3), 2768-2772.
255. Sallen, G., Bouet, L., Marie, X., Wang, G., Zhu, C. R., Han, W. P., Lu, Y., Tan, P. H., Amand, T., Liu, B. L., Urbaszek, B.; Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 2012, 86 (8), 081301.
256. Dirac Paul Adrien, M., Bohr Niels Henrik, D.; The quantum theory of the emission and absorption of radiation. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1927, 114 (767), 243-265.
257. Yu, H., Cui, X., Xu, X., Yao, W.; Valley excitons in two-dimensional semiconductors. Natl. Sci. Rev. 2015, 2 (1), 57-70.
258. Yuan, L., Huang, L.; Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7 (16), 7402-7408.
259. Shi, H., Yan, R., Bertolazzi, S., Brivio, J., Gao, B., Kis, A., Jena, D., Xing, H. G., Huang, L.; Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2 2D Crystals. ACS Nano 2013, 7 (2), 1072-1080.
260. Zhu, B., Chen, X., Cui, X.; Exciton Binding Energy of Monolayer WS2. Sci. Rep. 2015, 5, 9218.
261. Beal, A. R., Knights, J. C., Liang, W. Y.; Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C: Solid State Physics 1972, 5 (24), 3540.
262. Dvorak, M., Wei, S.-H., Wu, Z.; Origin of the Variation of Exciton Binding Energy in Semiconductors. Phys. Rev. Lett. 2013, 110 (1), 016402.
263. Song, Y., Dery, H.; Transport Theory of Monolayer Transition-Metal Dichalcogenides through Symmetry. Phys. Rev. Lett. 2013, 111 (2), 026601.
264. Liu, Q., Zhang, X., Zunger, A.; Intrinsic Circular Polarization in Centrosymmetric Stacks of Transition-Metal Dichalcogenide Compounds. Phys. Rev. Lett. 2015, 114 (8), 087402.
265. Chen, W.-L.; Lin, F.-C.; Lee, Y.-Y.; Li, F.-C.; Chang, Y.-M.; Huang, J.-S. "The Modulation Effect of Transverse, Antibonding, and Higher-Order Longitudinal Modes on the Two-Photon Photoluminescence of Gold Plasmonic Nanoantennas"ACS Nano 2014, 8, 9053-9062
266. Dai, W.-H.; Lin, F.-C.; Huang, C.-B.; Huang, J.-S. "Mode conversion in high-definition plasmonic optical nanocircuits" Nano Lett. 2014, 14, 3881-3886.
267. Nayak, P. K.; Lin, F.-C.; Yeh, C.-H.; Huang, J.-S.*, Chiu, P.-W. "Robust Room Temperature Valley Polarization in Monolayer and Bilayer WS2" Nanoscale 2016, 8, 6035-6042.
268. See, K.-M.; Lin, F.-C.; Chen, T.-Y.; Huang, Y.-X.; Huang, C.-H.; Yeşilyurt, A. T. M.; Huang, J.-S. "Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas" Nano Lett. 2018, 18, 6002-6008.
269. Ng, K. C.; Lin, F.-C.; Yang, P.-W.; Chuang Y.-C.; Chang, C.-K.; Yeh A.-H.; Kuo, C.-S.; Kao, C.-R.; Liu, C.-C.; Jeng, U.-S.; Huang, J.-S.; Kuo, C.-H. "Fabrication of Bimetallic Au−Pd−Au Nanobricks as an Archetype of Robust Nanoplasmonic Sensors" Chem. Mater. 2018, 30, 204-213.
270. See, K.-M.; Lin, F.-C.; Huang, J.-S." Design and characterization of a plasmonic Doppler grating for azimuthal angle-resolved surface plasmon resonances" Nanoscale 2017, 9, 10811-10819.
271. Lin, F.-C.; See, K.-M.; Huang, Y.-X.; Chen, Y.-J.; Ouyang, L.; Popp, J.; Huang, J.-S. "Designable spectrometer-free index sensing using plasmonic Doppler gratings" Anal. Chem., 2019, 91, 9382-9387.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *