帳號:guest(3.15.22.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李 浩
作者(外文):Lee, Hao
論文名稱(中文):二維極冷量子氣體
論文名稱(外文):Ultracold Quantum Gases in Two-Dimensional Systems
指導教授(中文):王道維
指導教授(外文):Wang, Daw-Wei
口試委員(中文):仲崇厚
牟中瑜
郭西川
陳柏中
口試委員(外文):Chung, Chung-Hou
Mou, Chung-Yu
Gou, Shih-Chuan
Chen, Po-Chung
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:100022806
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:107
中文關鍵詞:極冷系統冷原子量子相變超流體二維
外文關鍵詞:ultracoldsuperfluidBKTquantumBCStwo-dimensional
相關次數:
  • 推薦推薦:0
  • 點閱點閱:112
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
本論文細述了特異的二維極冷態,特別是波色系統與費米系統中的超流性及
其相變。為了介紹性的目的,第一部以總論的方式簡要提及極冷系統的若干基本
觀念,例如波色–愛因斯坦凝聚、超流體、BCS–BEC過渡及極性分子等。
第二部則以路徑積分量子蒙地卡羅法探討在光晶格中的二維波色系統。第三部研
究有長程交互作用力的費米系統中,超流體的非典型特性。
第一章首先介紹用以描述光晶格中波色子的單能帶波斯–赫巴德
(Bose-Hubbard)模型及其相圖。我簡要回顧了波斯–赫巴德模型中相變的主要
特徵,也就是零溫中的超流體–莫特絕緣體量子相變,與有限溫度中超流體–正
常流體的別列津斯基–科斯特利茨–索利斯(Berezinskii-Kosterlitz-Thouless, BKT)
相變。量子蒙地卡羅法在同一章的下一節中介紹。在一般性的簡述蒙地卡羅法的
運作方式之後,專注在建構路徑積分量子蒙地卡羅法,藉由路徑積分構築演算法
和圖像化的世界線圖,同時也說明常見的數值議題。
第二章由探究關聯函數來研究二維波斯–赫巴德模型中超流體–正常流體
與超流體–莫特絕緣體相變的臨界行為。尤其,以觀察關聯長度發散的規律,可
以區分BKT相變的臨界區與量子相變的臨界區。接著也調查了量子相變點周遭
的量子臨界區。其後也討論了實驗上觀察臨界區的可能的量與必要條件。
第三章裡把路徑積分量子蒙地卡羅法延伸到兩個不同的觀點中。第一節中討
論二維各向異性的案例。因為預期純一維的超流相變不存在,我觀察從二維低各
向異性至高各向異性,相變溫度的變化,進而與自恰諧波近似的解析結果相比。
第二節始於討論少體交互作用甚強,以至於單能帶波斯–赫巴德模型需要被修正
的情況。我分析了依賴交互作用的穿隧強度,並以佔據數的依賴性推廣波斯–赫
巴德模型。
第四章先介紹福爾德–費羅–拉金–歐夫欽尼可夫(Fulde-Ferrell-Larkin-Ov
-chinnikov, FFLO)態。此為一種非典型超流、超導態,存在於不同種的費米面
不平衡時。接著解釋極性分子在層狀結構的特定趣味與益處,特別在於實現費米
系統中的BCS–BEC過渡。
第五章裡分別用包含波戈留波夫(Bogoliubov)變換、格林函數與金茲堡–
朗道泛函等不同的方式,分析極性分子在雙層系統中的FFLO態。我展示了偶
極交互作用力如何藉由P 波通路增強FFLO態在零溫和有限溫度的穩定性。亦
探索了FFLO態的可能結構,與在實驗可及的參數中實現該狀態的可能性。
在延伸的第六章裡,我展示將相互吸引的費米性雷德堡原子置入雙層系統的
有趣之處,尤其是同層形成的庫柏對可以干擾層間的庫柏對。兩種庫柏對的競爭
甚或共存,於此探究。
This thesis elaborates the exotic two-dimensional ultracold states, in particular
the superfluidity and its phase transitions, for both bosonic and fermionic systems. In Part I, the basic concepts of ultracold systems, such as Bose-Einstein condensation, superfluid, the BCS-BEC crossover, and polar molecules, are briefly mentioned as an overview for pedagogical purposes. In Part II, the two-dimensional bosonic systems in optical lattices are investigated via path integral quantum Monte Carlo method. In Part III, the fermionic systems in the presence of long-ranged interaction are investigate
for the unconventional properties of superfluidity.
In Chapter 1, the single-band Bose-Hubbard model and its phase diagram are introduced to describe bosons in optical lattices. We briefly review the main features of the phase transitions in Bose-Hubbard model, namely, the superfluid-to-Mott insulator quantum phase transition at zero-temperature and the superfluid-to-normal Berezinskii-Kosterlitz-Thouless transition at finite temperature. Then, the quantum Monte Carlo method is introduced in the following section of the same Chapter. After a very brief overview on how Monte Carlo methods work in general, we focus on the construction of the path integral quantum Monte Carlo, based on the path integral to build up the algorithm with the graphical worldline diagram, together with the common numerical issues.
In Chapter 2, by probing the correlation functions, we investigate the critical behaviors of the superfluid-to-normal and superfluid-to-Mott insulator transitions in two-dimensional Bose-Hubbard model. In particular, by observing the divergence laws of the correlation length, the critical regimes of the Berezinskii-Kosterlitz-Thouless transition and of quantum phase transition are distinguished. Then the quantum critical regimes in the vicinity of quantum phase transition are investigated as well. Later on we discuss the
possible quantities and necessary conditions to observe the critical regimes in experiments.
In Chapter 3, we extend the path integral quantum Monte Carlo in two different perspectives. In the fi rst section, we consider anisotropic two-dimensional cases. We observe the change of the superfluid transition temperature from low anisotropy to high anisotropy, since it is expected to vanish in pure 1D, and compare with the analytical results from self-consistent harmonic approximation. In the second section, we start from the regime where the few-body interaction is so strong that the single-band Bose-Hubbard model needs corrections. We analyse the interaction-dependent tunneling
strength, and generalize the Bose-Hubbard model with occupation-dependence.
In Chapter 4, we fi rst introduce the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state, which is an unconventional superfluid/superconducting state occurring when the Fermi surfaces of different component are imbalanced. Then we explain the particular interests and the benefi ts of the polar molecules in layered structures, particularly in the realization of the BCS-BEC crossover in fermionic cases. The experimental progresses and the theoretical proposals of the polar molecules in layered structures are also mentioned.
In Chapter 5, we analyse the FFLO state made by polar molecules in bilayer system via various methods including the Bogoliubov transformation, Green's functions and Ginzburg-Landau functional. We demonstrate how the dipolar interaction can enhance the stability of FFLO state via the p-wave channel, at both zero- and finite-temperature. The possible structures of the FFLO state are investigated as well, and we show the possibility to realize such state in realistic parameters of experiments.
In Chapter 6, as an extension, we show the interest of loading attractive fermionic Rydberg atoms in a bilayer geometry. In particular, the Cooper pairs formed in the same layer can intertwine the interlayer Cooper pairs. The competition, and moreover the coexistence, of the two kinds of Cooper pairs are investigated.
I Overview 5
0.1 Bose-Einstein condensation (BEC) in cold atoms . . . . . . . . 7
0.1.1 The e ective interaction . . . . . . . . . . . . . . . . . 8
0.1.2 Gross-Pitaevskii equation . . . . . . . . . . . . . . . . 10
0.2 The superfluids: from bosons to fermions . . . . . . . . . . . . 11
0.2.1 The bosonic superfluid . . . . . . . . . . . . . . . . . . 11
0.2.2 The fermionic superfluid . . . . . . . . . . . . . . . . . 12
0.3 Bardeen-Cooper-Schrie er (BCS) to BEC crossover . . . . . . 13
0.4 The ultracold polar molecules . . . . . . . . . . . . . . . . . . 15
II The bosonic system and its critical regime in two-dimensional optical lattices 19
1 Introduction 21
1.1 Bosonic systems in optical lattices and Bose-Hubbard model . 21
1.1.1 The superfluid-to-Mott-insulator transition . . . . . . . 22
1.1.2 The finite-temperature situation . . . . . . . . . . . . . 23
1.2 Path integral quantum Monte Carlo . . . . . . . . . . . . . . . 25
1.2.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.3 Numerical issues . . . . . . . . . . . . . . . . . . . . . 29
2 Quantitative studies of the critical regime near the transition 31
2.1 The critical properties of correlation function . . . . . . . . . . 32
2.2 Critical regime of Berezinskii-Kosterlitz-Thouless (BKT) regime 33
2.3 Crossover regime near the quantum critical point . . . . . . . 38
2.4 The experiment-related issues and summary . . . . . . . . . . 41
3 Extensions to the unconventional cases 45
3.1 The anisotropic two-dimensional superfluid . . . . . . . . . . . 45
3.2 The occupation-dependent tunneling mechanism . . . . . . . . 50
III The fermionic unconventional superfluids in layered geometry 55
4 Introduction 57
4.1 The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state . . . . . . 57
4.2 Polar molecules in layer/bilayer geometry . . . . . . . . . . . . 60
5 The FFLO state of the dipolar gases in bilayer geometry 65
5.1 Interlayer interaction and order parameters . . . . . . . . . . . 65
5.2 Bogoliubov method of the plane wave (FF) state . . . . . . . . 68
5.3 Gor'kov's method and the Green's functions of FFLO . . . . . 69
5.4 Ginzburg-Laudau approach of FFLO . . . . . . . . . . . . . . 71
5.5 Dipolar FFLO at zero temperature . . . . . . . . . . . . . . . 73
5.6 Dipolar FFLO at fi nite temperature . . . . . . . . . . . . . . . 74
5.7 Summary and experiment-related issues . . . . . . . . . . . . . 76
6 Extension to the superfluids of Rydberg atoms in bilayer geometry 81
6.1 The Rydberg blockade and the Rydberg dressed interaction . . 81
6.2 The Bogoliubov analysis of the Rydberg atoms in bilayer geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 The competition and coexistence of intra- and inter-layer pairing 85
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7 Summary and outlook of the thesis 89
[1] C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute
Gases. CAMBRIDGE, 2002.
[2] Vanderlei Bagnato, David E. Pritchard, and Daniel Kleppner. Bose-einstein condensation in an external potential. Phys. Rev. A, 35:4354-4358, May 1987.
[3] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221):198-201, 1995.
[4] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of bose-einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75:1687-1690, Aug 1995.
[5] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75:3969-3973, Nov 1995.
[6] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80:885-964, Jul 2008.
[7] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71:463-512, Apr 1999.
[8] Anthony J. Leggett. Bose-einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73:307-356, 2001.
[9] P. Kapitza. Viscosity of liquid helium below the -point. Nature, 141:74, 1938.
[10] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell. Vortices in a bose-einstein condensate. Phys. Rev. Lett., 83:2498-2501, Sep 1999.
[11] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a stirred bose-einstein condensate. Phys. Rev. Lett., 84:806-809, Jan 2000.
[12] J. M. Vogels J. R. Abo-Shaeer, C. Raman and W. Ketterle. Observation of vortex lattices in bose-einstein condensates. Science, 292:476-479, 2001.
[13] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle. Condensation of pairs of fermionic atoms near a feshbach resonance. Phys. Rev. Lett., 92:120403, Mar 2004.
[14] D. S. Petrov. Three-body problem in fermi gases with short-range interparticle interaction. Phys. Rev. A, 67:010703, Jan 2003.
[15] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov. Weakly bound dimers of fermionic atoms. Phys. Rev. Lett., 93:090404, Aug 2004.
[16] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle. Vortices and superfluidity in a strongly interacting Fermi gas. Nature, 435(7045):1047-1051, Jun 2005.
[17] D. M. Eagles. Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev., 186:456-463, Oct 1969.
[18] A. J. Leggett. Diatomic molecules and cooper pairs. In A. Pekalski and J. A. Przystawa, editors, Modern Trends in the Theory of Condensed Matter, pages 13-27. Springer-Verlag, 1980.
[19] Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of ultracold atomic fermi gases. Rev. Mod. Phys., 80:1215-1274, Oct 2008.
[20] J. Carlson, S.-Y. Chang, V. R. Pandharipande, and K. E. Schmidt. Superfluid fermi gases with large scattering length. Phys. Rev. Lett., 91:050401, Jul 2003.
[21] J. Carlson and Sanjay Reddy. Asymmetric two-component fermion systems in strong coupling. Phys. Rev. Lett., 95:060401, Aug 2005.
[22] C. A. R. S a de Melo, Mohit Randeria, and Jan R. Engelbrecht. Crossover from bcs to bose superconductivity: Transition temperature and time-dependent ginzburg-landau theory. Phys. Rev. Lett.,
71:3202-3205, Nov 1993.
[23] P. Nozi eres and S. Schmitt-Rink. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity. Journal of Low Temperature Physics, 59(3):195-211, May 1985.
[24] Jan R. Engelbrecht, Mohit Randeria, and C. A. R. S ade Melo. Bcs to bose crossover: Broken-symmetry state. Phys. Rev. B, 55:15153-15156, Jun 1997.
[25] J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P. Pieri, and G. C. Strinati. Observation of pseudogap behaviour in a strongly interacting fermi gas. Nature Physics, 6:569 EP -, Jul 2010.
[26] D. DeMille. Quantum computation with trapped polar molecules. Phys. Rev. Lett., 88:067901, Jan 2002.
[27] S.-J. Huang, Y.-T. Hsu, H. Lee, Y.-C. Chen, A. G. Volosniev, N. T. Zinner, and D.-W. Wang. Field-induced long-lived supermolecules. Phys. Rev. A, 85:055601, May 2012.
[28] Lincoln D Carr, David DeMille, Roman V Krems, and Jun Ye. Cold and ultracold molecules: science, technology and applications. New Journal of Physics, 11(5):055049, 2009.
[29] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye. A high phase-space-density gas of polar molecules. Science, 322(5899):231-235, 2008.
[30] Jeremy M. Sage, Sunil Sainis, Thomas Bergeman, and David DeMille. Optical production of ultracold polar molecules. Phys. Rev. Lett., 94:203001, May 2005.
[31] Tetsu Takekoshi, Lukas Reichsollner, Andreas Schindewolf, Jeremy M. Hutson, C. Ruth Le Sueur, Olivier Dulieu, Francesca Ferlaino, Rudolf Grimm, and Hanns-Christoph Nagerl. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett., 113:205301, Nov 2014.
[32] J. Deiglmayr, A. Grochola, M. Repp, K. Mortlbauer, C. Gluck, J. Lange, O. Dulieu, R. Wester, and M. Weidemuller. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett., 101:133004, Sep 2008.
[33] Timur M. Rvachov, Hyungmok Son, Ariel T. Sommer, Sepehr Ebadi, Juliana J. Park, Martin W. Zwierlein, Wolfgang Ketterle, and Alan O. Jamison. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett., 119:143001, Oct 2017.
[34] Cheng-Hsun Wu, Jee Woo Park, Peyman Ahmadi, Sebastian Will, and Martin W. Zwierlein. Ultracold fermionic feshbach molecules of 23Na40K. Phys. Rev. Lett., 109:085301, Aug 2012.
[35] Jee Woo Park, Sebastian A. Will, and Martin W. Zwierlein. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett., 114:205302, May 2015.
[36] Mingyang Guo, Bing Zhu, Bo Lu, Xin Ye, Fudong Wang, Romain Vexiau, Nadia Bouloufa-Maafa, Goulven Qu em ener, Olivier Dulieu, and Dajun Wang. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett., 116:205303, May 2016.
[37] A. Micheli, G. Pupillo, H. P. Buchler, and P. Zoller. Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Phys. Rev. A, 76:043604, Oct 2007.
[38] Hao Lee. Manipulating dipolar interaction between polar molecules with external fields. Master's thesis, National Tsing Hua University, Jun 2009.
[39] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller. Condensed matter theory of dipolar quantum gases. Chemical Reviews, 112(9):5012-5061, 2012. PMID: 22877362.
[40] P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J.-Y. Courtois, and G. Grynberg. Dynamics and spatial order of cold cesium atoms in a periodic optical potential. Phys. Rev. Lett., 68:3861-3864, Jun 1992.
[41] P. S. Jessen, C. Gerz, P. D. Lett, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and C. I. Westbrook. Observation of quantized motion of rb atoms in an optical field. Phys. Rev. Lett., 69:49-52, Jul 1992.
[42] A. Hemmerich and T. W. Hansch. Two-dimesional atomic crystal bound by light. Phys. Rev. Lett., 70:410-413, Jan 1993.
[43] Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, and Daniel S. Fisher. Boson localization and the superfluid-insulator transition.
Phys. Rev. B, 40:546-570, Jul 1989.
[44] N. Elstner and H. Monien. Dynamics and thermodynamics of the bose-hubbard model. Phys. Rev. B, 59:12184-12187, May 1999.
[45] J. K. Freericks and H. Monien. Phase diagram of the bose-hubbard model. EPL (Europhysics Letters), 26(7):545, 1994.
[46] J. K. Freericks and H. Monien. Strong-coupling expansions for the pure and disordered bose-hubbard model. Phys. Rev. B, 53:2691-2700, Feb 1996.
[47] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011.
[48] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hansch, and Immanuel Bloch. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867):39-44, Jan 2002.
[49] I. B. Spielman, W. D. Phillips, and J. V. Porto. Mott-insulator transition in a two-dimensional atomic bose gas. Phys. Rev. Lett., 98:080404, Feb 2007.
[50] I. B. Spielman, W. D. Phillips, and J. V. Porto. Condensate fraction in a 2d bose gas measured across the mott-insulator transition. Phys. Rev. Lett., 100:120402, Mar 2008.
[51] Nathan Gemelke, Xibo Zhang, Chen-Lung Hung, and Cheng Chin. In situ observation of incompressible mott-insulating domains in ultracold atomic gases. Nature, 460(7258):995-998, Aug 2009.
[52] N.V Prokof'ev, B.V Svistunov, and I.S Tupitsyn. worm algorithm in quantum monte carlo simulations. Physics Letters A, 238(4):253 - 257, 1998.
[53] N. V. Prokof'ev, B. V. Svistunov, and I. S. Tupitsyn. Exact, complete, and universal continuous-time worldline monte carlo approach to the statistics of discrete quantum systems. Journal of Experimental and Theoretical Physics, 87(2):310-321, Aug 1998.
[54] H. Bruus and K. Flensberg. Many-Body Quantum Theory in Condensed Matter Physics: An Introduction. Oxford Graduate Texts. OUP Oxford, 2004.
[55] Lode Pollet, Kris Van Houcke, and Stefan M.A. Rombouts. Engineering local optimality in quantum monte carlo algorithms. Journal of Computational Physics, 225(2):2249 - 2266, 2007.
[56] Chia-Min Chung. Quantum Monte Carlo Study of Two Component Bosons and Entanglement. PhD thesis, National Tsing Hua University, August 2014.
[57] E. L. Pollock and D. M. Ceperley. Path-integral computation of superfluid densities. Phys. Rev. B, 36:8343-8352, Dec 1987.
[58] Shiang Fang, Chia-Min Chung, Ping Nang Ma, Pochung Chen, and Daw-Wei Wang. Quantum criticality from in situ density imaging. Phys. Rev. A, 83:031605, Mar 2011.
[59] Massimo Campostrini, Andrea Pelissetto, and Ettore Vicari. Finitesize scaling at quantum transitions. Phys. Rev. B, 89:094516, Mar 2014.
[60] Markus Holzmann, Gordon Baym, Jean-Paul Blaizot, and Franck Lalo. Superfluid transition of homogeneous and trapped two-dimensional bose gases. Proceedings of the National Academy of Sciences, 104(5):1476-1481, 2007.
[61] Robert P. Smith, Naaman Tammuz, Robert L. D. Campbell, Markus Holzmann, and Zoran Hadzibabic. Condensed fraction of an atomic bose gas induced by critical correlations. Phys. Rev. Lett., 107:190403, Nov 2011.
[62] Morio Matsumoto, Daisuke Inotani, and Yoji Ohashi. Cooper pairs with zero center-of-mass momentum and their first-order correlation function in a two-dimensional ultracold fermi gas near a berezinskii-kosterlitz-thouless transition. Phys. Rev. A, 93:013619, Jan 2016.
[63] Kaden R. A. Hazzard and Erich J. Mueller. Techniques to measure quantum criticality in cold atoms. Phys. Rev. A, 84:013604, Jul 2011.
[64] Qi Zhou and Tin-Lun Ho. Signature of quantum criticality in the density profiles of cold atom systems. Phys. Rev. Lett., 105:245702, Dec 2010.
[65] Igor Boettcher and Markus Holzmann. Quasi-long-range order in trapped two-dimensional bose gases. Phys. Rev. A, 94:011602, Jul 2016.
[66] Nir Navon, Alexander L. Gaunt, Robert P. Smith, and Zoran Hadzibabic. Critical dynamics of spontaneous symmetry breaking in a homogeneous bose gas. Science, 347(6218):167-170, 2015.
[67] Kun Chen, Longxiang Liu, Youjin Deng, Lode Pollet, and Nikolay Prokof'ev. Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system. Phys. Rev. Lett., 112:030402, Jan 2014.
[68] Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, and Cheng Chin. Observation of scale invariance and universality in two-dimensional bose gases. Nature, 470(7333):236-239, Feb 2011.
[69] T. Donner, S. Ritter, T. Bourdel, A.  Ottl, M. Kohl, and T. Esslinger. Critical behavior of a trapped interacting bose gas. Science, 315(5818):1556-1558, 2007.
[70] Xibo Zhang, Chen-Lung Hung, Shih-Kuang Tung, Nathan Gemelke, and Cheng Chin. Exploring quantum criticality based on ultracold atoms in optical lattices. New Journal of Physics, 13(4):045011, 2011.
[71] V.L. Berezinskii. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group i. classical systems. Soviet Phys. JETP, 32(3):493, 1971.
[72] V. L. Berezinskii. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. ii. quantum systems. Sov. Phys. JETP, 34(3):610, 1972.
[73] J M Kosterlitz and D J Thouless. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics, 6(7):1181, 1973.
[74] Yu. Kagan, B.V. Svistunov, and G.V. Shlyapnikov. Influence on inelastic processes of the phase transition in a weakly collisional twodimensional bose gas. Sov. Phys. JETP, 66(2):314, 1987.
[75] Nigel R. Cooper and Zoran Hadzibabic. Measuring the superfluid fraction of an ultracold atomic gas. Phys. Rev. Lett., 104:030401, Jan 2010.
[76] Jhih-Shih You, Hao Lee, Shiang Fang, Miguel A. Cazalilla, and Daw-Wei Wang. Tuning the kosterlitz-thouless transition to zero temperature in anisotropic boson systems. Phys. Rev. A, 86:043612, Oct 2012.
[77] Zoran Hadzibabic, Peter Kruger, Marc Cheneau, Baptiste Battelier, and Jean Dalibard. Berezinskii-kosterlitz-thouless crossover in a trapped atomic gas. Nature, 441(7097):1118-1121, Jun 2006.
[78] P. Clad e, C. Ryu, A. Ramanathan, K. Helmerson, and W. D. Phillips. Observation of a 2d bose gas: From thermal to quasicondensate to
superfluid. Phys. Rev. Lett., 102:170401, Apr 2009.
[79] K. Jim enez-Garc a, R. L. Compton, Y.-J. Lin, W. D. Phillips, J. V. Porto, and I. B. Spielman. Phases of a two-dimensional bose gas in an optical lattice. Phys. Rev. Lett., 105:110401, Sep 2010.
[80] Anatoli Polkovnikov, Ehud Altman, and Eugene Demler. Interference between independent fluctuating condensates. Proceedings of the National Academy of Sciences, 103(16):6125-6129, 2006.
[81] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauss, C. Gross, L. Mazza, M. C. Banuls, L. Pollet, I. Bloch, and S. Kuhr. Single-site- and single-atom-resolved measurement of correlation functions. Applied Physics B, 113(1):27-39, Oct 2013.
[82] L. Pollet, N. V. Prokof'ev, and B. V. Svistunov. Criticality in trapped atomic systems. Phys. Rev. Lett., 104:245705, Jun 2010.
[83] A. Ranon and N. Dupuis. Quantum xy criticality in a two-dimensional bose gas near the mott transition. EPL (Europhysics Letters), 104(1):16002, 2013.
[84] N. D. Mermin and H. Wagner. Absence of ferromagnetism or anti-ferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett., 17:1133-1136, Nov 1966.
[85] J. Zinn-Justin. Quantum Field Theory and Critical Phenomena. International series of monographs on physics. Clarendon Press, 1996.
[86] Barbara Capogrosso-Sansone, S ebnem Gune s Soyler, Nikolay Prokof'ev, and Boris Svistunov. Monte carlo study of the twodimensional bose-hubbard model. Phys. Rev. A, 77:015602, Jan 2008.
[87] Subir Sachdev. Theory of finite-temperature crossovers near quantum critical points close to,or above, their upper-critical dimension. Phys. Rev. B, 55:142-163, Jan 1997.
[88] I. Bloch, T. W. Hansch, and T. Esslinger. Measurement of the spatial coherence of a trapped bose gas at the phase transition. Nature, 403(6766):166-170, Jan 2000.
[89] M. G. Ries, A. N. Wenz, G. Zurn, L. Bayha, I. Boettcher, D. Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim. Observation of pair condensation in the quasi-2d bec-bcs crossover. Phys. Rev. Lett., 114:230401, Jun 2015.
[90] P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar, M. Neidig, M. G. Ries, A. N. Wenz, G. Zurn, and S. Jochim. Observation of the berezinskii-kosterlitz-thouless phase transition in an ultracold Fermi gas. Phys. Rev. Lett., 115:010401, Jun 2015.
[91] Alexander L. Gaunt, Tobias F. Schmidutz, Igor Gotlibovych, Robert P. Smith, and Zoran Hadzibabic. Bose-einstein condensation of atoms in a uniform potential. Phys. Rev. Lett., 110:200406, May 2013.
[92] Lauriane Chomaz, Laura Corman, Tom Bienaime, Remi Desbuquois, Christof Weitenberg, Sylvain Nascimbene, Jerome Beugnon, and Jean Dalibard. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional bose gas. Nature Communications, 6:6162 EP -, Jan 2015. Article.
[93] Nikolai V. Prokof'ev and Boris V. Svistunov. Two definitions of superfluid density. Phys. Rev. B, 61:11282-11284, May 2000.
[94] Jhih-Shih You. Many-body phenomena in low-dimensional systems. PhD thesis, National Tsing Hua University, June 2015.
[95] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol. One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys., 83:1405-1466, Dec 2011.
[96] Kaden R. A. Hazzard and Erich J. Mueller. On-site correlations in optical lattices: Band mixing to coupled quantum hall puddles. Phys. Rev. A, 81:031602, Mar 2010.
[97] A. M. Clogston. Upper limit for the critical field in hard superconductors Phys. Rev. Lett., 9:266-267, Sep 1962.
[98] B. S. Chandrasekhar. A note on the maximum critical field of high field superconductors. Applied Physics Letters, 1(1):7-8, 1962.
[99] Peter Fulde and Richard A. Ferrell. Superconductivity in a strong spin-exchange field. Phys. Rev., 135:A550-A563, Aug 1964.
[100] A.I. Larkin and Yu.N. Ovchinnikov. Inhomogeneous state of superconductors. Soviet Phys. JETP, 20:762, 1965.
[101] R. Combescot. Introduction to o phases and collective mode in the bec-bcs crossover. In M. Inguscio, W. Ketterle, and C.Salomon, editors, Proceedings of the 2006 Enrico Fermi Summer School on "Ultracold Fermi gases", page 697, Jun 2007.
[102] L. N. Bulaevski. Magnetic properties of layered superconductors with weak interaction between the layers. Soviet Phys. JETP, 37:1133, 1973.
[103] A.I. Buzdin and V.V. Tugushev. Phase diagrams of electronic and superconductlng transitions to soliton lattice states. Soviet Phys. JETP, 58:428, 1986.
[104] Hiroshi Shimahara. Structure of the fulde-ferrell-larkin-ovchinnikov state in two-dimensional superconductors. Journal of the Physical Society of Japan, 67(3):736-739, 1998.
[105] C. Mora and R. Combescot. Nature of the fulde-ferrell-larkinovchinnikov phases at low temperature in 2 dimensions. EPL (Europhysics Letters), 66(6):833, 2004.
[106] K.B. Gubbels and H.T.C. Stoof. Imbalanced fermi gases at unitarity. Physics Reports, 525(4):255 - 313, 2013. Imbalanced Fermi Gases at Unitarity.
[107] Buzdin, A. I. and Brison, J. P. Non-uniform state in 2d superconductors. Europhys. Lett., 35(9):707-712, 1996.
[108] A.I. Buzdin and H. Kachkachi. Generalized ginzburg-landau theory for nonuniform o superconductors. Physics Letters A, 225(4):341 - 348, 1997.
[109] Hiroshi Shimahara. Upper critical fields of quasi-low-dimensional superconductors with coexisting singlet and triplet pairing interactions in parallel magnetic fields. Phys. Rev. B, 62:3524-3527, Aug 2000.
[110] Roberto Casalbuoni and Giuseppe Nardulli. Inhomogeneous superconductivity in condensed matter and qcd. Rev. Mod. Phys., 76:263-320, Feb 2004.
[111] Yuji Matsuda and Hiroshi Shimahara. Fuldeferrelllarkinovchinnikov state in heavy fermion superconductors. Journal of the Physical Society of Japan, 76(5):051005, 2007.
[112] Roberto Anglani, Roberto Casalbuoni, Marco Ciminale, Nicola Ippolito, Raoul Gatto, Massimo Mannarelli, and Marco Ruggieri. Crystalline color superconductors. Rev. Mod. Phys., 86:509-561, Apr 2014.
[113] Leo Radzihovsky and Daniel E Sheehy. Imbalanced feshbach-resonant fermi gases. Reports on Progress in Physics, 73(7):076501, 2010.
[114] Combescot, R. Bcs superfluidity in ultracold gases with unequal atomic populations. Europhys. Lett., 55(2):150-156, 2001.
[115] W. Ketterle and M. W. Zwierlein. Making, probing and understanding ultracold fermi gases. Rivista del Nuovo Cimento, 31, 2008.
[116] Leo Radzihovsky. Fluctuations and phase transitions in larkin-ovchinnikov liquid-crystal states of a population-imbalanced resonant fermi gas. Phys. Rev. A, 84:023611, Aug 2011.
[117] Stefan K. Baur, Sourish Basu, Theja N. De Silva, and Erich J. Mueller. Theory of the normal-superfluid interface in population-imbalanced fermi gases. Phys. Rev. A, 79:063628, Jun 2009.
[118] Kelly R. Patton and Daniel E. Sheehy. Induced superfluidity of imbalanced fermi gases near unitarity. Phys. Rev. A, 85:063625, Jun 2012.
[119] G. Orso. Attractive fermi gases with unequal spin populations in highly elongated traps. Phys. Rev. Lett., 98:070402, Feb 2007.
[120] Hui Hu, Xia-Ji Liu, and Peter D. Drummond. Phase diagram of a strongly interacting polarized fermi gas in one dimension. Phys. Rev. Lett., 98:070403, Feb 2007.
[121] K. V. Samokhin and M. S. Mar'enko. Nonuniform mixed-parity superfluid state in fermi gases. Phys. Rev. Lett., 97:197003, Nov 2006.
[122] A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L. Sarrao. Possible fulde-ferrell-larkin-ovchinnikov superconducting state in cecoin5. Phys. Rev. Lett., 91:187004, Oct 2003.
[123] H. A. Radovan, N. A. Fortune, T. P. Murphy, S. T. Hannahs, E. C. Palm, S. W. Tozer, and D. Hall. Magnetic enhancement of superconductivity from electron spin domains. Nature, 425(6953):51-55, Sep 2003.
[124] Martin W. Zwierlein, Andr e Schirotzek, Christian H. Schunck, and Wolfgang Ketterle. Fermionic superfluidity with imbalanced spin populations. Science, 2005.
[125] C. H. Schunck, Y. Shin, A. Schirotzek, M. W. Zwierlein, and W. Ketterle. Pairing without superfluidity: The ground state of an imbalanced fermi mixture. Science, 316(5826):867-870, 2007.
[126] Guthrie B. Partridge, Wenhui Li, Ramsey I. Kamar, Yean-an Liao, and Randall G. Hulet. Pairing and phase separation in a polarized Fermi gas. Science, 311(5760):503-505, 2006.
[127] Melissa C. Revelle, Jacob A. Fry, Ben A. Olsen, and Randall G. Hulet. 1d to 3d crossover of a spin-imbalanced fermi gas. Phys. Rev. Lett., 117:235301, Nov 2016.
[128] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quemener, B. Neyenhuis, M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin. Dipolar collisions of polar molecules in the quantum regime. Nature, 464(7293):1324-1328, Apr 2010.
[129] Goulven Qu em ener and John L. Bohn. Strong dependence of ultracold chemical rates on electric dipole moments. Phys. Rev. A, 81:022702, Feb 2010.
[130] Goulven Qu em ener and John L. Bohn. Electric field suppression of ultracold confined chemical reactions. Phys. Rev. A, 81:060701, Jun 2010.
[131] M. H. G. de Miranda, A. Chotia, B. Neyenhuis, D.Wang, G. Quemener, S. Ospelkaus, J. L. Bohn, J. Ye, and D. S. Jin. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nature Physics, 7:502 EP -, Mar 2011. Article.
[132] Ching-Kit Chan, Congjun Wu, Wei-Cheng Lee, and S. Das Sarma. Anisotropic-fermi-liquid theory of ultracold fermionic polar molecules: Landau parameters and collective modes. Phys. Rev. A, 81:023602, Feb 2010.
[133] Zhen-Kai Lu and G. V. Shlyapnikov. Fermi liquid of two-dimensional polar molecules. Phys. Rev. A, 85:023614, Feb 2012.
[134] G. M. Bruun and E. Taylor. Quantum phases of a two-dimensional dipolar fermi gas. Phys. Rev. Lett., 101:245301, Dec 2008.
[135] Kai Sun, CongjunWu, and S. Das Sarma. Spontaneous inhomogeneous phases in ultracold dipolar fermi gases. Phys. Rev. B, 82:075105, Aug 2010.
[136] Yasuhiro Yamaguchi, Takaaki Sogo, Toru Ito, and Takahiko Miyakawa. Density-wave instability in a two-dimensional dipolar fermi gas. Phys. Rev. A, 82:013643, Jul 2010.
[137] L. M. Sieberer and M. A. Baranov. Collective modes, stability, and superfluid transition of a quasi-two-dimensional dipolar fermi gas. Phys. Rev. A, 84:063633, Dec 2011.
[138] M. M. Parish and F. M. Marchetti. Density instabilities in a twodimensional dipolar fermi gas. Phys. Rev. Lett., 108:145304, Apr 2012.
[139] N. R. Cooper and G. V. Shlyapnikov. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett., 103:155302, Oct 2009.
[140] J. Levinsen, N. R. Cooper, and G. V. Shlyapnikov. Topological px+ipy superfluid phase of fermionic polar molecules. Phys. Rev. A, 84:013603, Jul 2011.
[141] H. P. Buchler, E. Demler, M. Lukin, A. Micheli, N. Prokof'ev, G. Pupillo, and P. Zoller. Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential. Phys. Rev. Lett., 98:060404, Feb 2007.
[142] G. E. Astrakharchik, J. Boronat, I. L. Kurbakov, and Yu. E. Lozovik. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett., 98:060405, Feb 2007.
[143] Barry Simon. The bound state of weakly coupled schrdinger operators in one and two dimensions. Annals of Physics, 97(2):279 - 288, 1976.
[144] Michael Klawunn, Alexander Pikovski, and Luis Santos. Two-dimensional scattering and bound states of polar molecules in bilayers. Phys. Rev. A, 82:044701, Oct 2010.
[145] M. A. Baranov, A. Micheli, S. Ronen, and P. Zoller. Bilayer superfluidity of fermionic polar molecules: Many-body effects. Phys. Rev. A, 83:043602, Apr 2011.
[146] A. Pikovski, M. Klawunn, G. V. Shlyapnikov, and L. Santos. Interlayer superfluidity in bilayer systems of fermionic polar molecules. Phys. Rev. Lett., 105:215302, Nov 2010.
[147] N. T. Zinner, B. Wunsch, D. Pekker, and D.-W. Wang. Bcs-bec crossover in bilayers of cold fermionic polar molecules. Phys. Rev. A, 85:013603, Jan 2012.
[148] Kazumasa Miyake. Fermi liquid theory of dilute submonolayer 3he on thin 4he ii lm dimer bound state and cooper pairs. Progress of Theoretical Physics, 69(6):1794-1797, 1983.
[149] Andrew C. Potter, Erez Berg, Daw-Wei Wang, Bertrand I. Halperin, and Eugene Demler. Superfluidity and dimerization in a multilayered system of fermionic polar molecules. Phys. Rev. Lett., 105:220406, Nov 2010.
[150] L.P. Gor'kov. Microscopic derivation of the ginzburg-landau equations in the theory of superconductivity. Soviet Phys. JETP, 9:1364, 1959.
[151] V.P. Mineev, K. Samokhin, L.D. Landau, and L.D. Landau. Introduction to Unconventional Superconductivity. Taylor & Francis, 1999.
[152] Combescot, R. and Mora, C. Transitions to the fulde-ferrell-larkinovchinnikov phases at low temperature in two dimensions. Eur. Phys. J. B, 44(2):189-202, 2005.
[153] Hiroshi Shimahara. Fulde-ferrell state in quasi-two-dimensional superconductors. Phys. Rev. B, 50:12760-12765, Nov 1994.
[154] Hao Lee, S. I. Matveenko, Daw-Wei Wang, and G. V. Shlyapnikov. Fulde-ferrell-larkin-ovchinnikov state in bilayer dipolar systems. Phys. Rev. A, 96:061602, Dec 2017.
[155] H. Burkhardt and D. Rainer. Fulde-ferrell-larkin-ovchinnikov state in layered superconductors. Annalen der Physik, 506(3):181-194, 1994.
[156] T.F. Gallagher. Rydberg Atoms. Cambridge Monographs on Atomic. Cambridge University Press, 2005.
[157] Kilian Singer, Jovica Stanojevic, Matthias Weidemller, and Robin Ct. Long-range interactions between alkali rydberg atom pairs correlated to the n s n s, n p n p and n d n d asymptotes. Journal of Physics B: Atomic, Molecular and Optical Physics, 38(2):S295, 2005.
[158] Thad G. Walker and M. Saffman. Consequences of zeeman degeneracy for the van der waals blockade between rydberg atoms. Phys. Rev. A, 77:032723, Mar 2008.
[159] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman. Observation of rydberg blockade between two atoms. Nature Physics, 5:110 EP -, Jan 2009.
[160] Alpha Gaetan, Yevhen Miroshnychenko, Tatjana Wilk, Amodsen Chotia, Matthieu Viteau, Daniel Comparat, Pierre Pillet, Antoine Browaeys, and Philippe Grangier. Observation of collective excitation of two individual atoms in the rydberg blockade regime. Nature Physics, 5:115 EP -, Jan 2009.
[161] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett., 87:037901, Jun 2001.
[162] J B Balewski, A T Krupp, A Gaj, S Hofferberth, R Lw, and T Pfau. Rydberg dressing: understanding of collective many-body effects and implications for experiments. New Journal of Physics, 16(6):063012, 2014.
[163] N. Henkel, R. Nath, and T. Pohl. Three-dimensional roton excitations and supersolid formation in rydberg-excited bose-einstein condensates. Phys. Rev. Lett., 104:195302, May 2010.
[164] N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl. Supersolid vortex crystals in rydberg-dressed bose-einstein condensates. Phys. Rev. Lett., 108:265301, Jun 2012.
[165] Rolf Heidemann, Ulrich Raitzsch, Vera Bendkowsky, Bjorn Butscher, Robert Low, and Tilman Pfau. Rydberg excitation of bose-einstein condensates. Phys. Rev. Lett., 100:033601, Jan 2008.
[166] Bo Xiong, H. H. Jen, and Daw-Wei Wang. Topological superfluid by blockade effects in a rydberg-dressed fermi gas. Phys. Rev. A, 90:013631, Jul 2014.
[167] Yen-Ting Lin, Ching-Yu Huang, Hao Lee, and Daw-Wei Wang. Quantum degenerate majorana zero modes in two-dimensional continuous space. (arXiv:1707.06419), 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *