帳號:guest(18.222.113.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王繼文
作者(外文):Wang, Ji-Wun
論文名稱(中文):過渡金屬硫族化物場效電晶體之低頻雜訊行為
論文名稱(外文):Low-Frequency Noise in Transition Metal Dichalcogenides Field-Effect Transistor
指導教授(中文):陳正中
陳永富
指導教授(外文):Chen, Jeng-Chung
Chen, Yung-Fu
口試委員(中文):林大欽
李奕賢
唐述中
蘇雲良
口試委員(外文):Ling, Dah-Chin
Lee, Yi-Hsien
Tang, Shu-Jung
Soo, Yun-Liang
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:100022554
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:77
中文關鍵詞:過渡金屬硫族化物場效電晶體低頻雜訊
外文關鍵詞:Low-Frequency NoiseTransition Metal DichalcogenidesField-Effect Transistor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
本論文探導過渡金屬硫族化物(TMDCs)場效電晶體(FETs)的低頻電雜訊(1/f雜訊)。在所有的電子元件中均有1/f雜訊存在,1/f雜訊會決定元件可以最小可以偵測或處理的訊號強度。單層TMDCs半導體是新穎的材料,可以應用在奈米元件及光電元件上。TMDCs薄膜有巨大的面積-體積比,因此TMDCs薄膜性質極易受到表面狀況的影響,而1/f雜訊也是一種表面性質。探討TMDC-FETs的雜訊成因並設法降低雜訊強度是一個重要的課題。
我們用實驗的方式觀察單層二硫化鉬(MoS2)及二硫化鎢(WS2)FETs中的1/f雜訊。MoS2 FETs的元件有高電子遷移率及歐姆接觸,藉由聚合物電解質(polymer electrolyte),MoS2 的可以有效的調控到高載子濃度。使用聚合物電解質的MoS2 FETs,其雜訊可以用carrier number fluctuation 模型來描述。藉由比較使用和未使用聚合物電解質的MoS2 FETs元件,我們認為雜訊是來自於聚合物電解質和MoS2介面上的電陷阱。在WS2 FETs的元件中,在金屬及WS2接面形成蕭特基能障(Schottcky barrier),期雜訊沒有符合一般雜訊強度正比於電流平方的關係,而雜訊強度隨載子數的關係則符合Hooge mobility fluctuation模型的描述。
Low-frequency (1/f) electrical noise in transition metal dichalcogenides (TMDCs) field-effect transistor (FETs) is investigated in this thesis. The 1/f noise exists in almost all electronic devices and it sets a limit on how small the signal can be detected and processed. Semiconducting monolayer TMDCs are emergent materials for nano-devices and optoelectronic applications. TMDCs films are highly sensitivity to surface and interface conditions due to huge surface-to-volume ratio and the 1/f noise is related to surface condition. Investigating the origin of the 1/f noise in TMDC-based devices in order to reduce its strength is an interesting topic.
In this thesis, the noise behavior of monolayer MoS2 and WS2 FETs are experimentally studied. In MoS2 FETs, high mobility and ohmic contact are achieved. With the help of polymer electrolyte (PE), MoS2 FETs can be effectively tuned to high carrier density region. The noise behavior of MoS2 FETs with PE-encapsulation is described by carrier number fluctuation model. By comparing the MoS2 FET with and without PE-encapsulation, we suggest that 1/f noise result from the interfacial traps between MoS2 and PE. On the other hand in WS2 FETs, Schottcky barriers are formed in the interface between WS2 and metal contacts. The low frequency noises show the 1/f spectrum but the dependence on current deviates from S_I∝I^2 relation. The carrier density dependence shows that the noise can be described by Hooge mobility fluctuation model.
Abstract i
Acknowledgements ii
Table of Contents iii
List of Figures vi
List of Tables xii

Chapter 1. Introduction 1
Chapter 2. Background Knowledge 5
2.1 Electrical Noise 5
2.1.1. The 1/f Noise Models 10
2.1.2. Mobility Fluctuation 11
2.1.3. Carrier Number Fluctuation 12
2.1.4. Carrier number fluctuation with correlated mobility fluctuations 19
2.2 Transition Metal Dichalcogenides 22
2.2.1. General Property of TMDCs 23
2.2.2. Synthesis and Characterization 26
2.2.3. Applications 30
Chapter 3. Experimental Methods 33
3.1 Noise Measurement 33
3.2 Polymer Electrolyte Gating Method 34
3.3 Device Fabrication 38
Chapter 4. Low Frequency Noise in MoS2 40
4.1 Review of Recent Research 40
4.2 Experimental Purpose 42
4.3 Device Characterization 42
4.4 Transport Properties 44
4.5 The 1/f Noise in PE-free and PE-encapsulated devices 46
4.6 The Noise Behaviors of the PE-encapsulated Devices 48
4.7 Summary 51
Chapter 5. Low Frequency Noise in WS2 52
5.1 Review of Recent Research 52
5.2 WS2 monolayers FET Characterizations 56
5.3 Transport Properties 56
5.4 The 1/f Noise in Room Temperature 58
5.5 Temperature Dependence of Transport Properties 61
5.6 Temperature Dependence of Noise Behavior 63
5.7 Summary 64
Chapter 6. Conclusions 65
Chapter 7. Future Works 68
Bibliography 71

[1] W. H. Press, Flicker noises in astronomy and elsewhere, Comments on Astrophysics 1978, 7, 103.
[2] D. J. Levitin, P. Chordia, V. Menon, Musical rhythm spectra from Bach to Joplin obey a 1/f power law, Proceedings of the National Academy of Sciences 2012, 109, 3716.
[3] P. Allegrini, D. Menicucci, R. Bedini, L. Fronzoni, A. Gemignani, P. Grigolini, B. J. West, P. Paradisi, Spontaneous brain activity as a source of ideal 1/f noise, Physical Review E 2009, 80, 061914.
[4] M. Kobayashi, T. Musha, 1/f fluctuation of heartbeat period, IEEE transactions on Biomedical Engineering 1982, 456.
[5] M. B. Weissman, 1/f Noise and Other Slow, Nonexponential Kinetics in Condensed Matter, Reviews of Modern Physics 1988, 60, 537.
[6] I. Present, Cramming more components onto integrated circuits, Readings in computer architecture 2000, 56.
[7] M. Valenza, A. Hoffmann, D. Sodini, A. Laigle, F. Martinez, D. Rigaud, Overview of the impact of downscaling technology on 1/f noise in p-MOSFETs to 90nm, IEE Proc.-Circuits Devices Syst 2004, 151.
[8] S. Kumar, Fundamental Limits to Moore's Law, arXiv preprint arXiv:1511.05956 2015.
[9] J.-A. Carballo, W.-T. J. Chan, P. A. Gargini, A. B. Kahng, S. Nath, "ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap", presented at Computer Design (ICCD), 2014 32nd IEEE International Conference on, IEEE, 2014.
[10] M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors, Nature Reviews Materials 2016, 1, 16052.
[11] D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics, Nature Communications 2014, 5, 5678.
[12] P. Horowitz, W. Hill, The Art of Electronics, Cambridge University Press, 2015.
[13] M. V. Haartman, M. Ostling, Low-Frequency Noise in Advanced MOS Devices, Springer Publishing Company, Incorporated, 2007.
[14] J. B. Johnson, Thermal Agitation of Electricity in Conductors, Physical Review 1928, 32, 97; H. Nyquist, Thermal Agitation of Electric Charge in Conductors, Physical Review 1928, 32, 110.
[15] W. Schottky, Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern, Annalen der Physik 1918, 362, 541.
[16] S. Machlup, Noise in Semiconductors: Spectrum of a Two‐Parameter Random Signal, Journal of Applied Physics 1954, 25, 341.
[17] F. N. Hooge, 1/ƒ noise is no surface effect, Physics Letters A 1969, 29, 139.
[18] P. Dutta, P. Horn, Low-frequency fluctuations in solids: 1/f noise, Reviews of Modern physics 1981, 53, 497.
[19] F. N. Hooge, T. G. M. Kleinpenning, L. K. J. Vandamme, Experimental studies on 1/f noise, Reports on Progress in Physics 1981, 44, 479.
[20] E. K. R. H. M. a. L. Burstein, Semiconductor surface physics, Philadelphia (Pa.) : University of Pennsylvania press, 1957.
[21] G. Ghibaudo, O. Roux, C. Nguyen‐Duc, F. Balestra, J. Brini, Improved analysis of low frequency noise in Field‐Effect MOS transistors, physica status solidi (a) 1991, 124, 571.
[22] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 1981.
[23] R. Jayaraman, C. G. Sodini, A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon, IEEE Transactions on Electron Devices 1989, 36, 1773.
[24] J. Na, M. K. Joo, M. Shin, J. Huh, J. S. Kim, M. Piao, J. E. Jin, H. K. Jang, H. J. Choi, J. H. Shim, G. T. Kim, Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation, Nanoscale 2014, 6, 433.
[25] S. Ghatak, S. Mukherjee, M. Jain, D. D. Sarma, A. Ghosh, Microscopic origin of low frequency noise in MoS2 field-effect transistors, Apl Materials 2014, 2, 092515.
[26] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, science 2004, 306, 666.
[27] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, A roadmap for graphene, Nature 2012, 490, 192.
[28] F. Xia, D. B. Farmer, Y.-M. Lin, P. Avouris, Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Letters 2010, 10, 715.
[29] C. R. Dean, A. F. Young, Merici, Leec, Wangl, Sorgenfreis, Watanabek, Taniguchit, Kimp, K. L. Shepard, Honej, Boron nitride substrates for high-quality graphene electronics, Nat Nano 2010, 5, 722.
[30] A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Physical Review B 2012, 86, 115409.
[31] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature nanotechnology 2012, 7, 699.
[32] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Physical Review B 2011, 83, 245213.
[33] M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A. F. Oliveira, A. Kuc, T. Heine, Electromechanics in MoS2 and WS2: nanotubes vs. monolayers, Scientific Reports 2013, 3, 2961.
[34] Z. Y. Zhu, Y. C. Cheng, U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Physical Review B 2011, 84, 153402; J. A. Reyes-Retana, F. Cervantes-Sodi, Spin-orbital effects in metal-dichalcogenide semiconducting monolayers, Scientific Reports 2016, 6, 24093.
[35] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide, Nature Communications 2012, 3, 887.
[36] K.-C. Chiu, X.-Q. Zhang, X. Liu, V. M. Menon, Y.-F. Chen, J.-M. Wu, Y.-H. Lee, Synthesis and Application of Monolayer Semiconductors (June 2015), IEEE Journal of Quantum Electronics 2015, 51, 1.
[37] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, T. W. Lin, Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition, Advanced Materials 2012, 24, 2320.
[38] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Advanced Functional Materials 2012, 22, 1385.
[39] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically Thin MoS2 : A New Direct-Gap Semiconductor, Physical Review Letters 2010, 105, 136805.
[40] Radisavljevicb, Radenovica, Brivioj, Giacomettiv, Kisa, Single-layer MoS2 transistors, Nat Nano 2011, 6, 147.
[41] B. Radisavljevic, M. B. Whitwick, A. Kis, Integrated Circuits and Logic Operations Based on Single-Layer MoS2, ACS Nano 2011, 5, 9934.
[42] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat Nano 2013, 8, 497.
[43] D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, C. Park, Flexible transition metal dichalcogenide nanosheets for band-selective photodetection, Nature communications 2015, 6, 8063.
[44] F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties, Nano Letters 2015, 15, 6777.
[45] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat Nano 2015, 10, 313.
[46] Dasa, Pisanas, Chakrabortyb, Piscanecs, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat Nano 2008, 3, 210.
[47] V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, M. C. Hersam, Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors, Nano Lett. 2013, 13, 4351.
[48] Y.-F. Lin, Y. Xu, C.-Y. Lin, Y.-W. Suen, M. Yamamoto, S. Nakaharai, K. Ueno, K. Tsukagoshi, Origin of Noise in Layered MoTe2 Transistors and its Possible Use for Environmental Sensors, Advanced Materials 2015, 27, 6612.
[49] J. Renteria, R. Samnakay, S. L. Rumyantsev, C. Jiang, P. Goli, M. S. Shur, A. A. Balandin, Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts, Applied Physics Letters 2014, 104, 153104.
[50] J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics, Nano Letters 2012, 12, 4013.
[51] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, P. Jarillo-Herrero, Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2, Nano Letters 2013, 13, 4212; B. Radisavljevic, A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2, Nat Mater 2013, 12, 815.
[52] D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, A. Kis, Electrical Transport Properties of Single-Layer WS2, Acs Nano 2014, 8, 8174.
[53] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, A. Kis, Electrical Transport Properties of Single-Layer WS2, ACS Nano 2014, 8, 8174.
[54] M.-K. Joo, Y. Yun, S. Yun, Y. H. Lee, D. Suh, Strong Coulomb scattering effects on low frequency noise in monolayer WS2 field-effect transistors, Applied Physics Letters 2016, 109, 153102.
[55] U. Nandi, C. Mukherjee, K. Bardhan, 1/f noise in nonlinear inhomogeneous systems, Physical Review B 1996, 54, 12903.
[56] F. Hooge, T. Kleinpenning, L. Vandamme, Experimental studies on 1/f noise, Reports on progress in Physics 1981, 44, 479.
[57] J. Lee, I. Han, D. Heo, J. Brini, A. Chovet, C. Dimitriadis, J. Jeong, Low frequency noise spectroscopy for Schottky contacts, Journal of the Korean Physical Society 2000, 37, 966.
[58] T. S. Hsu, Low-frequency excess noise in metal—Silicon Schottky barrier diodes, IEEE Transactions on Electron Devices 1970, 17, 496.
[59] S. T. Hsu, Flicker noise in metal semiconductor Schottky barrier diodes due to multistep tunneling processes, IEEE Transactions on Electron Devices 1971, 18, 882.
[60] M. Y. Luo, G. Bosman, A. V. D. Ziel, L. L. Hench, Theory and experiments of 1/f noise in Schottky-barrier diodes operating in the thermionic-emission mode, IEEE Transactions on Electron Devices 1988, 35, 1351.
[61] R. Singh, D. Kanjilal, Temperature dependence of 1/f noise in Pd/n-GaAs Schottky barrier diode, Journal of Applied Physics 2002, 91, 411.
[62] C. M. Smyth, R. Addou, S. Mcdonnell, C. L. Hinkle, R. M. Wallace, Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2-Based Device Performance, The Journal of Physical Chemistry C 2016, 120, 14719.
[63] S. Hwan Lee, D. Lee, W. Sik Hwang, E. Hwang, D. Jena, W. Jong Yoo, High-performance photocurrent generation from two-dimensional WS2 field-effect transistors, Applied Physics Letters 2014, 104, 193113.
[64] M. Ishigami, J. H. Chen, E. D. Williams, D. Tobias, Y. F. Chen, M. S. Fuhrer, Hooge's constant for carbon nanotube field effect transistors, Applied Physics Letters 2006, 88, 203116.
[65] Y. M. Lin, J. C. Tsang, M. Freitag, P. Avouris, Impact of oxide substrate on electrical and optical properties of carbon nanotube devices, Nanotechnology 2007, 18, 295202.
[66] Y. M. Lin, P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Letters 2008, 8, 2119.
[67] G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Applied Physics Letters 2009, 95, 033103.
[68] H. N. Arnold, V. K. Sangwan, S. W. Schmucker, C. D. Cress, K. A. Luck, A. L. Friedman, J. T. Robinson, T. J. Marks, M. C. Hersam, Reducing flicker noise in chemical vapor deposition graphene field-effect transistors, Applied Physics Letters 2016, 108, 073108.
[69] F. N. H. a. T. G. M. K. a. L. K. J. Vandamme, Experimental studies on 1/f noise, Reports on Progress in Physics 1981, 44, 479; B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, Antimonide-based compound semiconductors for electronic devices: A review, Solid-State Electronics 2005, 49, 1875.
[70] Y. M. Lai, H. P. Li, D. K. Kim, B. T. Diroll, C. B. Murray, C. R. Kagan, Low-Frequency (1/f) Noise in Nanocrystal Field-Effect Transistors, Acs Nano 2014, 8, 9664.
[71] F. S. Stinner, Y. M. Lai, D. B. Straus, B. T. Diroll, D. K. Kim, C. B. Murray, C. R. Kagan, Flexible, High-Speed CdSe Nanocrystal Integrated Circuits, Nano Letters 2015, 15, 7155.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *