|
[1] W. H. Press, Flicker noises in astronomy and elsewhere, Comments on Astrophysics 1978, 7, 103. [2] D. J. Levitin, P. Chordia, V. Menon, Musical rhythm spectra from Bach to Joplin obey a 1/f power law, Proceedings of the National Academy of Sciences 2012, 109, 3716. [3] P. Allegrini, D. Menicucci, R. Bedini, L. Fronzoni, A. Gemignani, P. Grigolini, B. J. West, P. Paradisi, Spontaneous brain activity as a source of ideal 1/f noise, Physical Review E 2009, 80, 061914. [4] M. Kobayashi, T. Musha, 1/f fluctuation of heartbeat period, IEEE transactions on Biomedical Engineering 1982, 456. [5] M. B. Weissman, 1/f Noise and Other Slow, Nonexponential Kinetics in Condensed Matter, Reviews of Modern Physics 1988, 60, 537. [6] I. Present, Cramming more components onto integrated circuits, Readings in computer architecture 2000, 56. [7] M. Valenza, A. Hoffmann, D. Sodini, A. Laigle, F. Martinez, D. Rigaud, Overview of the impact of downscaling technology on 1/f noise in p-MOSFETs to 90nm, IEE Proc.-Circuits Devices Syst 2004, 151. [8] S. Kumar, Fundamental Limits to Moore's Law, arXiv preprint arXiv:1511.05956 2015. [9] J.-A. Carballo, W.-T. J. Chan, P. A. Gargini, A. B. Kahng, S. Nath, "ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap", presented at Computer Design (ICCD), 2014 32nd IEEE International Conference on, IEEE, 2014. [10] M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors, Nature Reviews Materials 2016, 1, 16052. [11] D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics, Nature Communications 2014, 5, 5678. [12] P. Horowitz, W. Hill, The Art of Electronics, Cambridge University Press, 2015. [13] M. V. Haartman, M. Ostling, Low-Frequency Noise in Advanced MOS Devices, Springer Publishing Company, Incorporated, 2007. [14] J. B. Johnson, Thermal Agitation of Electricity in Conductors, Physical Review 1928, 32, 97; H. Nyquist, Thermal Agitation of Electric Charge in Conductors, Physical Review 1928, 32, 110. [15] W. Schottky, Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern, Annalen der Physik 1918, 362, 541. [16] S. Machlup, Noise in Semiconductors: Spectrum of a Two‐Parameter Random Signal, Journal of Applied Physics 1954, 25, 341. [17] F. N. Hooge, 1/ƒ noise is no surface effect, Physics Letters A 1969, 29, 139. [18] P. Dutta, P. Horn, Low-frequency fluctuations in solids: 1/f noise, Reviews of Modern physics 1981, 53, 497. [19] F. N. Hooge, T. G. M. Kleinpenning, L. K. J. Vandamme, Experimental studies on 1/f noise, Reports on Progress in Physics 1981, 44, 479. [20] E. K. R. H. M. a. L. Burstein, Semiconductor surface physics, Philadelphia (Pa.) : University of Pennsylvania press, 1957. [21] G. Ghibaudo, O. Roux, C. Nguyen‐Duc, F. Balestra, J. Brini, Improved analysis of low frequency noise in Field‐Effect MOS transistors, physica status solidi (a) 1991, 124, 571. [22] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 1981. [23] R. Jayaraman, C. G. Sodini, A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon, IEEE Transactions on Electron Devices 1989, 36, 1773. [24] J. Na, M. K. Joo, M. Shin, J. Huh, J. S. Kim, M. Piao, J. E. Jin, H. K. Jang, H. J. Choi, J. H. Shim, G. T. Kim, Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation, Nanoscale 2014, 6, 433. [25] S. Ghatak, S. Mukherjee, M. Jain, D. D. Sarma, A. Ghosh, Microscopic origin of low frequency noise in MoS2 field-effect transistors, Apl Materials 2014, 2, 092515. [26] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, science 2004, 306, 666. [27] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, A roadmap for graphene, Nature 2012, 490, 192. [28] F. Xia, D. B. Farmer, Y.-M. Lin, P. Avouris, Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Letters 2010, 10, 715. [29] C. R. Dean, A. F. Young, Merici, Leec, Wangl, Sorgenfreis, Watanabek, Taniguchit, Kimp, K. L. Shepard, Honej, Boron nitride substrates for high-quality graphene electronics, Nat Nano 2010, 5, 722. [30] A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Physical Review B 2012, 86, 115409. [31] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature nanotechnology 2012, 7, 699. [32] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Physical Review B 2011, 83, 245213. [33] M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A. F. Oliveira, A. Kuc, T. Heine, Electromechanics in MoS2 and WS2: nanotubes vs. monolayers, Scientific Reports 2013, 3, 2961. [34] Z. Y. Zhu, Y. C. Cheng, U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Physical Review B 2011, 84, 153402; J. A. Reyes-Retana, F. Cervantes-Sodi, Spin-orbital effects in metal-dichalcogenide semiconducting monolayers, Scientific Reports 2016, 6, 24093. [35] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide, Nature Communications 2012, 3, 887. [36] K.-C. Chiu, X.-Q. Zhang, X. Liu, V. M. Menon, Y.-F. Chen, J.-M. Wu, Y.-H. Lee, Synthesis and Application of Monolayer Semiconductors (June 2015), IEEE Journal of Quantum Electronics 2015, 51, 1. [37] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, T. W. Lin, Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition, Advanced Materials 2012, 24, 2320. [38] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Advanced Functional Materials 2012, 22, 1385. [39] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically Thin MoS2 : A New Direct-Gap Semiconductor, Physical Review Letters 2010, 105, 136805. [40] Radisavljevicb, Radenovica, Brivioj, Giacomettiv, Kisa, Single-layer MoS2 transistors, Nat Nano 2011, 6, 147. [41] B. Radisavljevic, M. B. Whitwick, A. Kis, Integrated Circuits and Logic Operations Based on Single-Layer MoS2, ACS Nano 2011, 5, 9934. [42] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat Nano 2013, 8, 497. [43] D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, C. Park, Flexible transition metal dichalcogenide nanosheets for band-selective photodetection, Nature communications 2015, 6, 8063. [44] F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties, Nano Letters 2015, 15, 6777. [45] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat Nano 2015, 10, 313. [46] Dasa, Pisanas, Chakrabortyb, Piscanecs, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat Nano 2008, 3, 210. [47] V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, M. C. Hersam, Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors, Nano Lett. 2013, 13, 4351. [48] Y.-F. Lin, Y. Xu, C.-Y. Lin, Y.-W. Suen, M. Yamamoto, S. Nakaharai, K. Ueno, K. Tsukagoshi, Origin of Noise in Layered MoTe2 Transistors and its Possible Use for Environmental Sensors, Advanced Materials 2015, 27, 6612. [49] J. Renteria, R. Samnakay, S. L. Rumyantsev, C. Jiang, P. Goli, M. S. Shur, A. A. Balandin, Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts, Applied Physics Letters 2014, 104, 153104. [50] J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics, Nano Letters 2012, 12, 4013. [51] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, P. Jarillo-Herrero, Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2, Nano Letters 2013, 13, 4212; B. Radisavljevic, A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2, Nat Mater 2013, 12, 815. [52] D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, A. Kis, Electrical Transport Properties of Single-Layer WS2, Acs Nano 2014, 8, 8174. [53] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, A. Kis, Electrical Transport Properties of Single-Layer WS2, ACS Nano 2014, 8, 8174. [54] M.-K. Joo, Y. Yun, S. Yun, Y. H. Lee, D. Suh, Strong Coulomb scattering effects on low frequency noise in monolayer WS2 field-effect transistors, Applied Physics Letters 2016, 109, 153102. [55] U. Nandi, C. Mukherjee, K. Bardhan, 1/f noise in nonlinear inhomogeneous systems, Physical Review B 1996, 54, 12903. [56] F. Hooge, T. Kleinpenning, L. Vandamme, Experimental studies on 1/f noise, Reports on progress in Physics 1981, 44, 479. [57] J. Lee, I. Han, D. Heo, J. Brini, A. Chovet, C. Dimitriadis, J. Jeong, Low frequency noise spectroscopy for Schottky contacts, Journal of the Korean Physical Society 2000, 37, 966. [58] T. S. Hsu, Low-frequency excess noise in metal—Silicon Schottky barrier diodes, IEEE Transactions on Electron Devices 1970, 17, 496. [59] S. T. Hsu, Flicker noise in metal semiconductor Schottky barrier diodes due to multistep tunneling processes, IEEE Transactions on Electron Devices 1971, 18, 882. [60] M. Y. Luo, G. Bosman, A. V. D. Ziel, L. L. Hench, Theory and experiments of 1/f noise in Schottky-barrier diodes operating in the thermionic-emission mode, IEEE Transactions on Electron Devices 1988, 35, 1351. [61] R. Singh, D. Kanjilal, Temperature dependence of 1/f noise in Pd/n-GaAs Schottky barrier diode, Journal of Applied Physics 2002, 91, 411. [62] C. M. Smyth, R. Addou, S. Mcdonnell, C. L. Hinkle, R. M. Wallace, Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2-Based Device Performance, The Journal of Physical Chemistry C 2016, 120, 14719. [63] S. Hwan Lee, D. Lee, W. Sik Hwang, E. Hwang, D. Jena, W. Jong Yoo, High-performance photocurrent generation from two-dimensional WS2 field-effect transistors, Applied Physics Letters 2014, 104, 193113. [64] M. Ishigami, J. H. Chen, E. D. Williams, D. Tobias, Y. F. Chen, M. S. Fuhrer, Hooge's constant for carbon nanotube field effect transistors, Applied Physics Letters 2006, 88, 203116. [65] Y. M. Lin, J. C. Tsang, M. Freitag, P. Avouris, Impact of oxide substrate on electrical and optical properties of carbon nanotube devices, Nanotechnology 2007, 18, 295202. [66] Y. M. Lin, P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Letters 2008, 8, 2119. [67] G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Applied Physics Letters 2009, 95, 033103. [68] H. N. Arnold, V. K. Sangwan, S. W. Schmucker, C. D. Cress, K. A. Luck, A. L. Friedman, J. T. Robinson, T. J. Marks, M. C. Hersam, Reducing flicker noise in chemical vapor deposition graphene field-effect transistors, Applied Physics Letters 2016, 108, 073108. [69] F. N. H. a. T. G. M. K. a. L. K. J. Vandamme, Experimental studies on 1/f noise, Reports on Progress in Physics 1981, 44, 479; B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, Antimonide-based compound semiconductors for electronic devices: A review, Solid-State Electronics 2005, 49, 1875. [70] Y. M. Lai, H. P. Li, D. K. Kim, B. T. Diroll, C. B. Murray, C. R. Kagan, Low-Frequency (1/f) Noise in Nanocrystal Field-Effect Transistors, Acs Nano 2014, 8, 9664. [71] F. S. Stinner, Y. M. Lai, D. B. Straus, B. T. Diroll, D. K. Kim, C. B. Murray, C. R. Kagan, Flexible, High-Speed CdSe Nanocrystal Integrated Circuits, Nano Letters 2015, 15, 7155.
|