帳號:guest(3.144.31.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周柏豪
作者(外文):Chou, Po-Hao
論文名稱(中文):電子系統中拓樸與關聯效應的交互影響
論文名稱(外文):Interplay of topology and correlation effects in electronic systems
指導教授(中文):牟中瑜
指導教授(外文):Mou, Chung-Yu
口試委員(中文):王道維
陳柏中
仲崇厚
張明哲
口試委員(外文):Wang, Daw-Wei
Chen, Po-Chung
Chung, Chung-Hou
Chang, Ming-Che
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:100022548
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:122
中文關鍵詞:近藤絕緣體拓樸超導數值重整化群
外文關鍵詞:Kondo insulatortopologysuperconductivitynumerical renormalization group
相關次數:
  • 推薦推薦:0
  • 點閱點閱:532
  • 評分評分:*****
  • 下載下載:45
  • 收藏收藏:0
在本論文裡,我們探討了電子系統中拓樸與關聯效應的交互影響;
並檢視了三種電子關聯系統中的拓樸效應: 從拓樸安德森晶格模型中的
近藤-狄拉克費米子、薄拓樸絕緣體中由不同表面態電子配對產生的p-波
超導、到受張力石墨烯中超導態的庫柏對密度波。
對於一個在導帶與局域化電子間具有自旋-軌道耦合形式混成的廣義
安德森晶格模型,我們的研究表明在廣泛的溫度與其他參數空間內,狄
拉克費米子可以出現於強與弱拓樸絕緣相之間。而當考慮導帶電子間的
庫倫作用後,臨界點附近產生的
狄拉克費米子將表現出狄拉克液體的行為。
在拓樸絕緣體系統中,我們發現由於幾何和超導不穩性導致拓樸超導
的可能性,即藉由調控薄拓樸絕緣體的厚度,來控制拓樸絕緣體不同表面
態間的電子配對。此外我們也發現由於曲率效應,球面的表面態導致的超
導可以自發產生渦旋以及在其中心的馬約拉那費米子。
最後,當石墨烯的皺褶足夠大時將會產生拓樸平能帶。而當
強赫巴德作用存在時,我們發現對於一給定週期的皺褶,手性d-波超導可以
穩定於輕微參雜的石墨烯。更重要的是,研究表明在有限溫度時可以產生
兩倍皺褶波長的庫柏對密度波超導態。
In this thesis, we investigate the interplay of topological and correlation in electronic
systems. Topological effects in three correlated electronic systems are examined: from
Kondo-Dirac fermions in a topological Anderson lattice, inter-surface p-wave pairing
in thin topological insulators, to strain induced superconducting pair density waves in
graphene. It is shown that in a generalized Anderson lattice with spin-orbit type hy-
bridization between conduction electrons and localized electrons, Dirac fermions emerge
over large temperature and parameter regime between strong and weak topological in-
sulating phases. The massless Dirac fermions form a critical point with nearby regime
characterized by the Dirac liquids when Coulomb interaction for conduction electrons is in-
cluded. In the system of topological insulators, we find that the interplay of geometry and
superconducting instability leads to the possibility of forming topological superconductiv-
ity due to inter-surface pairing by tuning the thickness of the thin topological insulators.
Furthermore, it is shown that superconductivity on spherical surfaces can spontaneously
generate vortices with a Majorana fermion at the center due to the curvature effect. Fi-
nally, it is shown that ripples in graphene, if their amplitudes are large enough, generate
topological flat bands. In the presence of strong Hubbard U interaction, we find that for
a given wavelength of ripple, chiral d-wave superconductivity can be stablized even in
slightly doped graphene. Most importantly, it is shown that superconducting pair density
wave state emerges at a finite temperature regime with doubled wavelength.
Contents IV
List of Figures VIII
1 Introduction 1
2 Kondo effect with the presence of spin-orbit type hybridization 4
2.1 Anderson model with the presence of spin-orbit type hybridization . . . . . 4
2.1.1 Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Anderson lattice model . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Generalized Kondo model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Single impurity Kondo model . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Kondo lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Poor man’s RG analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Analysis of single impurity Kondo model . . . . . . . . . . . . . . . 6
2.3.2 Analysis of Kondo lattice model . . . . . . . . . . . . . . . . . . . . 8
3 Numerical renormalization group(NRG) analysis 11
3.1 Introduction of Wilson’s NRG . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Kondo model in continuous energy basis . . . . . . . . . . . . . . . 11
3.1.2 Logarithmic discrete Hamiltonian . . . . . . . . . . . . . . . . . . . 12
3.1.3 Wilson’s chain model . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Iteration and truncation of Wilson’s NRG . . . . . . . . . . . . . . 14
3.1.5 Symmetry of Wilson’s chain model . . . . . . . . . . . . . . . . . . 17
3.1.6 Completed basis and Hamiltonian matrix element . . . . . . . . . . 17
3.1.7 RG flow and fixed point . . . . . . . . . . . . . . . . . . . . . . . . 18
II
3.1.8 Calculation of thermodynamic and static properties . . . . . . . . . 18
3.2 NRG in the generalized Kondo model . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 2D generalized Kondo model in angular momentum space . . . . . . 20
3.2.2 Two channel Wilson’s chain model . . . . . . . . . . . . . . . . . . 22
3.2.3 Symmetry of the two channel Kondo model(2CK) . . . . . . . . . . 23
3.2.4 Detail of 2CK calculation . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Dirac fermion in Kondo lattice at finite temperature 26
4.1 Slave boson mean-field approach . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Topological classification and phase diagram . . . . . . . . . . . . . . . . . 27
4.3 Dirac fermion at finite temperature . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Fermionic finite-temperature critical point and corresponded physical prop-
erties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Self energy by including boson correction . . . . . . . . . . . . . . . 32
4.4.2 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.3 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.4 Magnetic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Superconductive states with triplet pairing induced by geometry 42
5.1 P-wave pairing induced in thin film geometry . . . . . . . . . . . . . . . . 42
5.1.1 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 The mean-field Hamiltonian and the p-wave gap equation . . . . . . 44
5.1.3 Thickness-dependent T c and SC phase transition . . . . . . . . . . . 46
5.2 Triplet pairing on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 The Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 The mean-field Hamiltonian and gap equation . . . . . . . . . . . . 50
5.2.3 Vortex on the sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6 Strain field induced pair density wave in graphene 54
6.1 Flat band under strain field and the t-J model in honeycomb lattice . . . . 55
6.2 Mean-field Hamiltonian and Equations . . . . . . . . . . . . . . . . . . . . 57
6.3 Exotic superconducting pair density with momentum Q/2 at zero temper-
ature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
III
6.4 Finite temperature superconducting phase and superfluid density . . . . . 61
7 Conclusion and outlook 65
A Calculation details of Wilson’s chain model 67
A.1 U S (1) × U Q (1) symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 SU S (2) × U Q (1) symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 SU S (2) × SU Q (2) symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B Calculation details of 2CK model 79
B.1 SU j (2) × SU Q (2) symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C Superconductive properties of the TI nanoflakes 95
C.1 Longitudinal electron-phonon interaction . . . . . . . . . . . . . . . . . . . 95
C.2 The eigenfunctions of Dirac Hamiltonian at finite size . . . . . . . . . . . . 95
C.3 Interaction projecting into surface fermion basis . . . . . . . . . . . . . . . 98
C.4 The p-wave SC gap equation . . . . . . . . . . . . . . . . . . . . . . . . . . 100
D Superconductive properties of Spherical TI 103
D.1 Exact eigenfunctions of H D in global frame . . . . . . . . . . . . . . . . . . 103
D.1.1 Surface state energy in large R . . . . . . . . . . . . . . . . . . . . 106
D.1.2 Rotating eigenfunctions into local coordinate . . . . . . . . . . . . . 108
D.2 Derivation of effective surface Hamiltonian . . . . . . . . . . . . . . . . . . 109
D.3 Mean-field equations of ∆ ˜ s
˜
s 0
jj 0 , ¯ m ¯ m 0
. . . . . . . . . . . . . . . . . . . . . . . . 112
E Singlet superconducting Hamiltonian on the
strain graphene 114
E.1 Matrix elements of the effective 1D chain model . . . . . . . . . . . . . . . 114
E.2 The effective 1D chain model with translational symmetry . . . . . . . . . 117
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95 146802 (2005).
[2] M. Konig, S. Wiedmann, C. Brune, A Roth, H. Buhmann, L. W. Molenkamp, X. L.
Qi, and S. C. Zhang, Sience 318 776 (2007).
[3] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314 1757 (2006).
[4] T. Yoshida, S. Fujimoto, and N. Kawakami, Phys. Rev. B 85, 125113 (2012).
[5] Y. Tada, R. Peters, M. Oshikawa, A. Koga, N. Kawakami, and S. Fujimoto, Phys.
Rev. B 85, 165138 (2012).
[6] S. Raghu, Xl. L. Qi, C. Henerkampp, and S. C. Zhang, Phys. Rev. Lett. 100, 156401
(2008).
[7] Y. Zhang, Y. Rau, and A. Vishwanath, Phys. Rev. B 79, 245331 (2009).
[8] B. Yan, L. Muchler, X.-L. Qi, S.-C. Zhang, and C. Felser, Phys. Rev. B 85, 165125
(2012).
[9] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Phys. Rev. Lett. 104 106408 (2010).
[10] D. J. Kim, J. Xia, and Z. Fisk, Nat. Mater. 13, 466 (2014).
[11] T. Yoshida, R. Peters, S. Fujimoto and N. Kawakami, Phys. Rev. B 87, 085134
(2013)
[12] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
[13] P.W. Anderson, J. Phys. C: Solid St. Phys. 3, 2436 (1970).
[14] K. G. Wilson Rev. Mod. Phys. 47, 773 (1975).
[15] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, K.G., Phys. Rev. B 21,
1003 (1980).
[16] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, K.G., Phys. Rev. B 21,
1044 (1980).
[17] A. C. Hewson, The Kondo problem to heavy fermions (Cambridge Univ. Press, Cam-
bridge New York, 1997).
[18] R. Bulla, T. A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
[19] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
[20] A. A. Burkov, M. D. Hook, and L. Balents: Phys. Rev. B 84, 235126 (2011).
[21] D. E. Sheehy and J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007).
[22] A. Auerbach and K. Levin, Phys. Rev. Lett. 57, 877 (1986).
[23] A.J. Millis and P.A. Lee, Phys. Rev. B 35, 2294 (1987).
[24] N. Read and D. M. Newns, J. Phys. C: Solid State Phys. 16, 3273 (1983).
[25] L. Zhao, H. Deng, I. Korzhovska, M. Begliarbekov, Z. Chen, E. Andrade, E. Rosen-
thal, A. Pasupathy, V. Oganesyan, and L. Krusin-Elbaum, Nat. Commun. 6, 8279
(2015).
[26] A.-P. Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993).
[27] C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. B 82,
045122 (2010).
[28] McMillan, W. L. Phys. Rev. 167, 331 (1968).
[29] Bessas, D; Sergueev, I; Wille, H.-C.; Peron, P; Ebling, D; Hermann R.P. Phys. Rev.
B 86, 224301 (2012).
[30] A. A. Abrikosov, Int. J. Mod. Phys. A 17, 885 (2002).
[31] K.-I. Imura, Y. Yoshimura, Y. Takane, and T. Fukui, Phys. Rev. B 86, 235119 (2012).
[32] Zhao, L; Deng, H; Korzhovska, I; Begliarbekov, M; Chen, Zh; Andrade, E; Rosenthal,
E; Pasupathy, A; Oganesyan, V; Krusin-Elbaum, L. Nat .Commun, 6, 8279 (2015).
[33] Y. E. Kraus, A. Auerbach, H. A. Fertig, and S. H. Simon, Phys. Rev. Lett. 101,
267002 (2008).
[34] Y. E. Kraus, A. Auerbach, H. A. Fertig, and S. H. Simon, Phys. Rev. B 79, 134515
(2009).
[35] Dunster TM (2010) Legendre and related functions. In: Olver Frank W J, Lozier
Daniel M, Boisvert Ronald F, Clark Charles W (eds) NIST handbook of mathematical
functions.
[36] T. Dray, J. Math. Phys. 26, 1030 (1985).
[37] T. T. Wu and C. N. Yang, Nucl. Phys. B 107, 365 (1976).
[38] T. T. Wu and C. N. Yang, Phys. Rev. D 16, 1018 (1977).
[39] N. B. Kopnin, T. T. Heikkil, and G. E. Volovik, Phys. Rev.B 83, 220503 (2011).
[40] V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).
[41] V. J. Kauppila, F. Aikebaier, and T. T. Heikkil, Phys. Rev. B 93, 214505 (2016).
[42] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-
Herrero, Nature 556, 43 (2018).
[43] J. E. Hirsh, Phys. Rev. Lett. 54, 1317 (1985).
[44] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
[45] F. C. Zhang, C. Gros, T. M. Rice, H. Shiba, Supercond. Sci. Tech. 1, 36 (1988).
[46] M. U. Ubben and P. A. Lee, Phys. Rev. B 46, 8434 (1992)
[47] A. M. Black-Schaffer and C. Honerkamp, J. Phys.: Condens. Matter 26, 423201
(2014).
[48] D. F. Agterberg and H. Tsunetsugu, Nat. Phys. 4, 639 (2008).
[49] D. J. Scalapino, S. R. White, and S. C. Zhang, Phys. Rev. B 47, 7995 (1993).
[50] P.-H. Chou, L.-J. Zhai, C.-H. Chung, C.-Y. Mou, and T.-K. Lee, Phys. Rev. Lett.
116, 177002 (2016).
[51] S. Chadov,X-L. Qi, J. Kubler, G. H. Fecher,C. Felser, and S-C Zhang, Nature Mate-
rials 9, 541 (2010).
[52] S. Dzsaber, L. Prochaska, A. Sidorenko, G. Eguchi, R. Svagera, M. Waas, A.
Prokofiev, Q. Si, and S. Paschen, Phys. Rev. Lett. 118, 246601 (2017).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *