|
1. M. Ainsworth and Z. Mao, Analysis and Approximation of a Fractional Cahn-Hilliard Equation, SIAM J. Numer. Anal., 55 (4) (2017) pp. 1689-1718.
2. M. Ainsworth and Z. Mao, Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation, Chaos Solitons Fractals, 102 (2017) pp. 264-273.
3. E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E 61.1 (2000): 132.
4. O. Bakunin, Turbulence and diffusion: scaling versus equations, Springer Science & Business Media, 2008.
5. S. Chen, J. Shen, and L. L. Wang Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput. 85.300 (2016): 1603-1638.
6. W. Chen, Soft matter and fractional mathematics: insights into mesoscopic quantum and time-space structures, arXiv preprint cond-mat/0405345, 2004.
7. R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Levy models, SIAM J. Numer. Anal., 43(4): pp. 1596-1626, 2005.
8. K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010.
9. S. Duo, H. W. van Wyk, and Y. Zhang, A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys. 355 (2018): 233-252.
10. B. Epps and B. Cushman-Roisin, Turbulence modeling via the fractional Laplacian, arXiv preprint arXiv:1803.05286, 2018.
11. V. J. Ervin, N. Heuer, and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal. 45(2) (2007) 572-591.
12. G. H. Gao, Z. Z. Sun, and H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys. 259 (2014): 33-50.
13. G. Gilboa, and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model Simul. 7.3 (2008): 1005-1028.
14. Y. Huang, and A. Oberman, Numerical methods for the fractional Laplacian: A finite difference-quadrature approach, SIAM J.Numer. Anal 52.6 (2014): 3056-3084.
15. J. Huang, Y. Tang, L. Vazquez, and J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms 64.4 (2013): 707-720.
16. X. Q. Jin, F. R. Lin, and Z. Zhao, Preconditioned iterative methods for two-dimensional space-fractional diffusion equations, Comput. Phys. Commun. 18.2 (2015): 469-488.
17. M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (1) (2017) pp. 7-51.
18. S. L. Lei, and H. W. Sun, A circulant preconditioner for fractional diffusion equations J. Comput. Phys. 242 (2013): 715-725.
19. X. Li, and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47(3) (2009) 2108-2131.
20. X. Li, and C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8(5) (2010) 1016.
21. F. R. Lin, S. W. Yang, and X. Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys. 256 (2014): 109-117.
22. X. L. Lin, M. K. Ng, and H. W. Sun, A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations, SIAM J. Matrix Anal. Appl 38.4 (2017): 1580-1614.
23. A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. Meerschaert, M. Ainsworth, and G. Karniadakis, What Is the Fractional Laplacian?, arXiv preprintarXiv:1801.09767 (2018).
24. Z. Mao, S. Chen, J. Shen, Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations, Appl. Numer. Math. 106 (2016) 165-181.
25. M. Meerschaert, H. P. Scheffler, and C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys. 211.1 (2006): 249-261.
26. R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1-77.
27. R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen. 37 1505-1535
28. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection dispersion flow equations, J. Comput. Appl. Math 172.1 (2004): pp. 65-77.
29. V. Minden, and L. Ying, A simple solver for the fractional Laplacian in multiple dimensions, arXiv preprint arXiv:1802.03770 (2018).
30. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198. Elsevier, 1998.
31. J. P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R^2, J. Comput. Appl. Math. 193(1) (2006) 243-268.
32. S. Samko, A. Kilbas, and O. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.
33. J. Seymour, J. Gage, S. Codd, and R. Gerlach, Magnetic resonance microscopy of biofouling induced scale dependent transport in porous media, Adv. Water. Res. 30.6-7 (2007): 1408-1420.
34. C. Tadjeran, M. Meerschaert, and H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213.1 (2006): 205-213.
35. W. Y. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84.294 (2015): pp. 1703-1727.
36. Y. N. Zhang, Z. Z. Sun, and H. L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys. 265 (2014): 195-210.
37. Z. Zhao, X. Q. Jin, and M. M. Lin, Preconditioned iterative methods for space-time fractional advection-diffusion equations, J. Comput. Phys. 319 (2016): 266-279.
|