帳號:guest(13.59.188.225)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭亘倫
作者(外文):Kuo, Hsuan-Lun
論文名稱(中文):感測器前端電路設計
論文名稱(外文):Front-end Circuits Design for Sensors
指導教授(中文):盧志文
指導教授(外文):Lu, Chih-Wen
口試委員(中文):陳宏偉
夏勤
尹炳業
黃彥中
口試委員(外文):Chen, Hung-Wei
Hsia, Chin
Yin, Ping-Yeh
Huang, Yen-Chung
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011871
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:65
中文關鍵詞:輻射探測器非二元-循續漸近式類比數位轉換器非二元加權-電容式數位類比轉換器多-冗餘-最低有效位-電容式數位類比轉換器
外文關鍵詞:radiation sensornon-binary SAR ADCnon-binary-weighted CDACmultiple-LSB redundant CDAC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這項研究中,採用CMOS 0.18μm 1P6M技術來製造用於輻射感測器的16通道前端讀取晶片。 此晶片讀取輻射偵測器的電流訊號,並使用非二進位逐次逼近暫存器(SAR)類比數位轉換器(ADC)將此訊號轉換為數位串列數據,取樣率為1 MS/s,解析度為10位元. 此晶片的最小(最大)微分非線性和積分非線性經測量分別為-0.32(0.33)和-0.43(0.37)最低有效位。 在輸入頻率為 500 kHz、取樣率為 1 MS/s 時,訊號雜訊失真比和有效位數分別確定為 57.41 dB 和 9.24 位元。 所開發晶片的 SAR ADC 在取樣率為 1 MS/s 時的品質因數為 38.9-fJ/conversion-step。 所開發的晶片可以讀取峰值電流範圍為20至750μA的輸入訊號,並且可以將類比訊號轉換為10位元串列輸出數位訊號。 此晶片的輸入動態範圍為2-75 pC,電流解析度為208.3 nA,面積為1.444 mm × 10.568 mm,每通道功耗為19 mW。 為了提高 SAR ADC 性能,提出了一種具有分離電容器、非二進制加權和多個最低有效位元 (LSB) 冗餘電容器數類比轉換器 (CDAC) 的低功耗 12 位元 SAR ADC。 所提出的具有非二進制加權和多個 LSB 冗餘 CDAC 的 SAR ADC 具有用於糾正由於雜訊和不完整的數位類比轉換器 (DAC) 開關穩定而導致的誤碼決策的最佳機制。 為了減少總電容,12 位元 DAC 的所有電容值均除以 16,並使用並聯電容方案來實現這些非整數電容。 12 位元 SAR ADC 採用 CMOS 0.18μm 1P6M技術製造。 測得的最小(最大)微分非線性和積分非線性分別為 -0.4(0.54) 和 -0.81(0.89) LSB,其中 1 LSB = 0.488 mV。 輸入頻率為 500 kHz、取樣率為 1 MS/s 時,訊號雜訊比和有效位數分別為 69.51 dB 和 11.25 位元。 所提出的 SAR ADC 在取樣率為 1 MS/s 時具有 18.39-fJ/conversion-step的品質因數 (FoM)。
In this study, complementary metal–oxide semiconductor 0.18-μm 1P6M technology was used to fabricate a 16-channel front-end readout chip for radiation sensors. This chip reads the current signal of the radiation sensor and converts this signal into digital serial data by using a nonbinary successive approximation register (SAR) analog-to-digital converter (ADC) with a sampling rate of 1 MS/s and a resolution of 10 bits. The minimum (maximum) differential nonlinearity and integral nonlinearity of this chip were measured to be −0.32 (0.33) and −0.43 (0.37) least significant bits, respectively. At an input frequency of 500 kHz and a sampling rate of 1 MS/s, the sig-nal-to-noise-and-distortion ratio and effective number of bits were determined to be 57.41 dB and 9.24 bits, respectively. The SAR ADC of the developed chip had a figure of merit of 38.9 fJ/conversion step at a sampling rate of 1 MS/s. The developed chip can read input signals with peak currents ranging from 20 to 750 μA, and it can convert analog signals into 10-bit serial-output digital signals. The input dynamic range of the chip is 2–75 pC, its current resolution is 208.3 nA, its area is 1.444 mm × 10.568 mm, and its power consumption per channel is 19 mW. For improving SAR ADC performance, a low-power 12-bit SAR ADC with split-capacitor, nonbinary-weighted, and multiple-least-significant-bit (LSB)-redundant capacitor digital-to-analog converters (CDACs) is proposed. The proposed SAR ADC with nonbinary-weighted and multiple-LSB-redundant CDACs has an optimal mechanism for correcting the bit error decisions due to noise and incomplete digital-to-analog converter (DAC) switching settling. To reduce the total capacitance, all capacitor values of the 12-bit DAC were divided by 16, and a parallel-series capacitor scheme was used to implement these noninteger capacitors. The 12-bit SAR ADC prototype was fabricated using 0.18-μm 1P6M complementary metal oxide semiconductor technology. The maximal differential nonlinearity and integral nonlinearity were measured as −0.4/0.54 and −0.81/0.89 LSB, respectively, where 1 LSB = 0.488 mV. The signal-to-noise-and-distortion ratio and effective number of bits were 69.51 dB and 11.25 bits, respectively, for the input frequency of 500 kHz and sampling rate of 1 MS/s. The proposed SAR ADC features an 18.39-fJ/conversion-step Figure-of-Merit (FoM) at the sampling rate of 1 MS/s.
摘要 i
ABSTRACT i
誌謝 ii
Contents iii
List of tables v
List of figures vi
Chapter 1. Introduction 1
1.1. Research Background of Front-end Circuits for Radiation Sensors 1
1.2. Research Background of Advanced SAR ADC 2
1.3. Motivation of Front-end Circuit Design for Radiation Sensors 3
1.4. Motivation of Design Advanced SAR ADC 6
1.5. Thesis Organization 6
Chapter 2. Design of Proposed Front-End Readout Chip for Radiation Sensors 7
Chapter 3. Circuit design and implementation 13
3.1. Amplifier 13
3.2. Integrator 14
3.3. Trigger Generator 15
3.4. Bias Circuit 16
3.5. Reset Circuit 17
3.6. Nonbinary SAR ADC 18
3.7. Nonbinary-to-Binary Converter 19
3.8. Parallel-in Serial-out Shift Register 19
Chapter 4. Measurement Results and Summary 21
4.1. Measurement Results 21
4.2. Summary 28
Chapter 5. Proposed 12-Bit SAR ADC 29
5.1. Split-capacitor, nonbinary-weighted, and multiple-LSB-redundant DACs 29
5.2. Reducing DAC weight mismatch and parasitic effect 37
Chapter 6. Architecture and Implementation of Key Building Blocks 44
6.1. Architecture of the proposed 12-bit SAR ADC. 44
6.2. The sample-and-tracking circuit and comparator 44
6.3. The asynchronous control circuit 45
6.4. The 20-bit nonbinary to 12-bit binary converter 48
Chapter 7. Experimental Results, Discussions and Summary 50
7.1. Experimental Results 50
7.2. Discussions of CDAC Performance 54
7.3. Summary 58
Chapter 8. Conclusion and Future Work 59
8.1. Conclusion 59
8.2. Future Work 59
References 61

[1] P. A. R. Abu, S.-L. Chen,” VLSI implementation of an efficient lossless EEG compression design for wireless body area network,” Applied Sciences, vol. 8, 2018, pp. 1-11.
[2] J.-Z. Jian, T.-R. Ger, H.-H. Lai, C.-M. Ku, C.-A. Chen, P. A. R. Abu, S.-L. Chen,” Detection of myocardial infarction using ECG and multi-scale feature concatenate,” Sensors, vol. 21, 2021, pp. 1-17.
[3] L.-H. Wang, W. Zhang, M.-H. Guan, S.-Y. Jiang, Fan, M.-H.; Abu, P. A. R; Chen, C.-A.; Chen, S.-L.. A low-power high-data-transmission multi-lead ECG acquisition sensor system. Sensors, vol. 19 2019, pp. 1-14.
[4] S.-L. Chen, J. F. Villaverde, H.-Y. Lee, W.-Y. Chung, T.-L. Lin, C.-H. Tseng, K.-A. Lo,” A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications,” IEEE Sensors Journal, vol. 17,2017, pp. 3461-3469.
[5] S.-L. Chen, M.-C. Tuan, H.-Y. Lee, T.-L. Lin,” VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks” IEEE Access, vol. 5, 2017, pp. 4077-4086.
[6] S.-L. Chen,” A power-efficient adaptive fuzzy resolution control system for wireless body sensor networks,” IEEE Access, vol. 3, 2015, pp. 743-751.
[7] T.-R. Ger, P.-S. Wu, W.-J. Wang, C.-A. Chen, P. A. R. Abu, S.-L. Chen,” Development of a microfluidic chip system with giant magnetoresistance sensor for high-sensitivity detection of magnetic nanoparticles in biomedical applications,” Biosensors, vol. 13, 2023, pp. 1-9.
[8] H.-L., Kuo, S.-L.,Chen,” Radiation Detector Front-End Readout Chip with Nonbinary Successive Approximation Register Analog-to-Digital Converter for Wearable Healthcare Monitoring Applications" Micromachines 15, no. 1: 143.
[9] C.-K. Liu, W.-Y. Chiang, P.-Z. Rao, P.-H. Hung, S.-L. Chen, C.-A. Chen, L.-H. Wang, P. A. R. Abu, S.-L. Chen,” The uses of a dual-band corrugated circularly polarized horn antenna for 5G systems,” Micromachines, vol. 13, 2022, pp. 1-18.
[10] S. Surti, M. E. Werner, A. E. Perkins, J. Kolthammer, J. S. Karp,” Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities,” The Journal of Nuclear Medicine, vol. 48, 2007, pp. 471–480.
[11] R. F. Muzic, J. A. Kolthammer,” PET performance of the Gemini TF: A time-of-flight PET/CT scanner” In Proc. IEEE Nucl. Sci. Symp. Conf. Rec. , vol. 3, 2006, pp. 1940–1944.
[12] N. Ollivier-Henry, W. Gao, N. A. Mbow, D. Brasse, B. Humbert, C. HuGuo, C. Colledani, Y. Hu,” Design and Characteristics of a Full-Custom Multichannel Front-End Readout ASIC Using Current-Mode CSA for Small Animal PET Imaging,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, 2011, pp. 90-99.
[13] W. Gao, D. Gao, T. Wei, H. Zeng, Y. Duan, S. Lu, L. Shen, W. Xu, Q. Xie, Y. Hu," Design of a Monolithic Multi-Channel Front-End Readout ASIC for LYSO/SiPM-based Small Animal Flat-Panel PET Imaging,” IEEE Nuclear Science Symposium Conference Record 2011, pp. 2447-2450.
[14] N. Schemm, S. Balkır, M. W. Hoffman,” A 4-μW CMOS Front End for Particle Detection Applications,” IEEE Trans. on Circuits And Systems—II: Express Briefs, vol. 57, 2010, pp. 100-104.
[15] W. Gao, D. Gao, C. Hu-Guo, T. Wei, Y. Hu,” Design and Characteristics of an Integrated Multichannel Ramp ADC Using Digital DLL Techniques for Small Animal PET Imaging,” IEEE Transactions on Nuclear Science, vol. 58, 2011, pp. 2161-2168.
[16] L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, R. Walker,” A Fully Digital 8×16 SiPM Array for PET Applications With Per-Pixel TDCs and Real-Time Energy Output,” IEEE J. Solid-State Circuits, vol. 49, 2014, pp. 301-314.
[17] Pieter Harpe, et. al, “A 0.20 mm2 3 nW Signal Acquisition IC for Miniature Sensor Nodes in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 1, Jan 2016, pp. 240-248.
[18] S.-Y. Kim, et. al, “Design of a High Efficiency DC–DC Buck Converter With Two-Step Digital PWM and Low Power Self-Tracking Zero Current Detector for IoT Applications,” IEEE Trans. Power Electron., vol. 33, no. 2, Feb. 2018, pp. 1428–1439.
[19] J.-E. Park, Y.-H. Hwang, and D.-K. Jeong, “A 0.4-to-1 V Voltage Scalable ΔΣADC With Two-Step Hybrid Integrator for IoT Sensor Applications in 65-nm LP CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 12, Dec. 2017, pp. 1417–1421.
[20] Junbo Shim, et. al, “An Ultra-Low-Power 16-Bit Second-Order Incremental ADC With SAR-Based Integrator for IoT Sensor Applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 12, Dec. 2018, pp. 1899–1903.
[21] Haoming Xin, et. al,” A 174 pW–488.3 nW 1 S/s–100 kS/s All-Dynamic Resistive Temperature Sensor With Speed/Resolution/Resistance Adaptability,” IEEE Solid-State Circuits Let., vol. 1, no. 3, Mar 2018, pp. 70-73.
[22] Ming Ding, et. al,” A Hybrid Design Automation Tool for SAR ADCs in IoT,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 12, Dec 2018, pp. 2853–2862.
[23] Z. Zhang, et. al,” A Dynamic Tracking Algorithm Based SAR ADC in Bio-Related Applications,” IEEE Access, vol. 6, pp. 62166–62173, Nov. 2018.
[24] W.-M. Chen, et. al,” A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, Jan 2014, pp. 232-247.
[25] J. L. McCreary and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniues—Part I,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, Dec. 1975, pp. 371-379.
[26] Brian P. Ginsburg, and Anantha P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, Apr. 2007, pp. 739-747.
[27] C. C. Liu, et. al, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, Apr. 2010, pp. 731-740.
[28] Y. Zhu, et. al, “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, Jun 2010, pp. 1111-1121.
[29] Erkan Alpman, et. al,” A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 76-77a.
[30] Nikolas P. Papadopoulos, et. al,” Toward Temperature Tracking With Unipolar Metal-Oxide Thin-Film SAR C-2C ADC on Plastic,” IEEE J. Solid-State Circuits, vol. 53, no. 8, Aug 2018, pp. 2263-2272.
[31] Andrea Agnes, et. al, ” A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time- Domain Comparator,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 246-247.
[32] J. Shen, A. Shikata, et. al, “A 16-bit 16MS/s SAR ADC with On-Chip Calibration in 55nm CMOS,” in Proc. Symp. VLSI Circuits (VLSIC), Kyoto, Japan, Jun. 2017, pp. C282-C283.
[33] J. Y. Um, et. al, “A Digital-Domain Calibration of Split-Capacitor DAC for a Differential SAR ADC Without Additional Analog Circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, Nov 2013, pp. 2845-2856.
[34] Yanfei Chen, et. al,” Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2009, pp. 279–282.
[35] C. C. Liu, C. H. Kuo, and Y. Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 11, Nov 2015, pp. 2645-2654.
[36] Pieter J. A. Harpe, et. al, Guido Dolmans, Harmke de Groot, “A 26μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE J. Solid-State Circuits, vol. 46, no. 7, Jul 2011, pp. 1585-1595.
[37] R. Xu, et. al,” A 1/2.5 inch VGA 400 fps CMOS Image Sensor With High Sensitivity for Machine Vision,” IEEE J. Solid-State Circuits, vol. 49, no. 10, Oct 2014, pp. 2342-2351.
[38] S. H. Wan, et. al, C. P. Huang, G. J. Ren, K. T. Chiou, C. H. Ho, “A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on driving capability of Reference voltage buffers,” in Proc. IEEE A-SSCC, 2013, pp.293-296.
[39] X.Y. Tong, et. al,” D/A conversion networks for high-resolution SAR A/D converters,” Electron. Let., vol. 47, no. 3, 2011, pp. 169-171.
[40] Michael Inerfield, et. al,” An 11.5-ENOB 100-MS/s 8mW dual-Reference SAR ADC in 28nm CMOS,” in Proc. Symp. VLSI Circuits (VLSIC), Jun. 2014, pp. 1-2.
[41] H. Zhang, et. al,” A 0.6-V 10-bit 200-kS/s SAR ADC With Higher Side-Reset-and-Set Switching Scheme and Hybrid CAP-MOS DAC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, Nov 2018, pp. 3639-3650.
[42] C. C. Liu, et. al, ” A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” in Proc. Symp. VLSI Circuits (VLSIC), Jun. 2010, pp. 241-242.
[43] C. C. Liu, et. al,” A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386-387.
[44] Franz Kuttner, “A 1.2V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2002, pp. 176-177.
[45] W. Liu, P. Huang, and Y. Chiu, “A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 11, Nov 2011, pp. 2661-2672.
[46] D. Li, Z. Zhu, R. Ding, and Y. Yang,” A 1.4-mW 10-Bit 150-MS/s SAR ADC With Nonbinary Split Capacitive DAC in 65-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 11, Nov 2018, pp. 1524-1528.
[47] Vito Giannini, et. al,” An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 238-239.
[48] H.-L. Kuo, C.-W. Lu, P. Chen,” An 18.39 fJ/Conversion-Step 1-MS/s 12-bit SAR ADC With Non-Binary Multiple-LSB-Redundant and Non-Integer-and-Split-Capacitor DAC,” IEEE Access, vol. 9, 2021, pp. 5651–5669.
[49] H.L. Kuo, C.-W. Lu, S.-G. Lin, D.-C. Chang,” A 10-bit 10 MS/s SAR ADC with the reduced capacitance DAC,” In Proc. International Symposium on Next-Generation Electronics (ISNE), Hsinchu, Taiwan, 4–6, May, 2016, pp. 1–2.
[50] B. Razavi,” Design of Analog CMOS Integrated Circuit,” Boston, McGraw-Hill, 2006, pp.209, pp. 378-381, 465.
[51] S. A. Mahmoud, A. M. Soliman,” The Differential Difference Operational Floating Amplifier: A New Block for Analog Signal Processing in MOS Technology,” IEEE Trans. on Circuits And Systems—II: Analog and Digital Signal Processing, vol. 45, 1998, pp. 148-158.
[52] Naveen Verma, and Anantha P. Chandrakasan, “ An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 42, no. 6, Jun 2007, pp. 1196-1205.
[53] A.M. Abo, and P.R. Gray,” A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, May 1999, pp. 599-606.
[54] Y.-J. Chen, K.-H. Chang, and C.-C. Hsieh,” A 2.02–5.16 fJ/Conversion Step 10 Bit Hybrid Coarse-Fine SAR ADC With Time-Domain Quantizer in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 2, Feb 2016, pp. 357-364.
[55] Michiel van Elzakker, et. al,” A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 243-245.
[56] P.M. Figueiredo, and J.C. Vital,” Kickback noise reduction techniques for CMOS latched comparators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, Jul 2006, pp. 541-545.
[57] H.W. Kang, H. K. Hong, W. Kim, and S. T. Ryu , “A Time-Interleaved 12-b 270-MS/s SAR ADC With Virtual-Timing-Reference Timing-Skew Calibration Scheme,” IEEE J. Solid-State Circuits, vol. 53, no. 9, Sep 2018, pp. 2584-2594.
[58] C. W. Hsu, et. al,” A 12-b 40-MS/s Calibration-Free SAR ADC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, Mar 2018, pp. 881-890.
[59] Yi Shen, Z. Zhu, S. Liu, and Y. Yang,” A Reconfigurable 10-to-12-b 80-to-20-MS/s Bandwidth Scalable SAR ADC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 1, Jan 2018, pp. 51-60.
[60] Y. Hirai, et. al, “A Biomedical Sensor System With Stochastic A/D Conversion and Error Correction by Machine Learning,” IEEE Access, vol. 7, Mar. 2019, pp. 21990–22001.
[61] Naveen Verma, and Anantha P. Chandrakasan,“ An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 42, no. 6, Jun 2007, pp. 1196-1205.
[62] Shanthi Pavan, Richard Schreier, Gabor C. Temes, “Understanding Delta-Sigma Data Converters,” 2017, Wiley-IEEE Press, pp. 140-162.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *