|
[1] P. A. R. Abu, S.-L. Chen,” VLSI implementation of an efficient lossless EEG compression design for wireless body area network,” Applied Sciences, vol. 8, 2018, pp. 1-11. [2] J.-Z. Jian, T.-R. Ger, H.-H. Lai, C.-M. Ku, C.-A. Chen, P. A. R. Abu, S.-L. Chen,” Detection of myocardial infarction using ECG and multi-scale feature concatenate,” Sensors, vol. 21, 2021, pp. 1-17. [3] L.-H. Wang, W. Zhang, M.-H. Guan, S.-Y. Jiang, Fan, M.-H.; Abu, P. A. R; Chen, C.-A.; Chen, S.-L.. A low-power high-data-transmission multi-lead ECG acquisition sensor system. Sensors, vol. 19 2019, pp. 1-14. [4] S.-L. Chen, J. F. Villaverde, H.-Y. Lee, W.-Y. Chung, T.-L. Lin, C.-H. Tseng, K.-A. Lo,” A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications,” IEEE Sensors Journal, vol. 17,2017, pp. 3461-3469. [5] S.-L. Chen, M.-C. Tuan, H.-Y. Lee, T.-L. Lin,” VLSI implementation of a cost-efficient micro control unit with an asymmetric encryption for wireless body sensor networks” IEEE Access, vol. 5, 2017, pp. 4077-4086. [6] S.-L. Chen,” A power-efficient adaptive fuzzy resolution control system for wireless body sensor networks,” IEEE Access, vol. 3, 2015, pp. 743-751. [7] T.-R. Ger, P.-S. Wu, W.-J. Wang, C.-A. Chen, P. A. R. Abu, S.-L. Chen,” Development of a microfluidic chip system with giant magnetoresistance sensor for high-sensitivity detection of magnetic nanoparticles in biomedical applications,” Biosensors, vol. 13, 2023, pp. 1-9. [8] H.-L., Kuo, S.-L.,Chen,” Radiation Detector Front-End Readout Chip with Nonbinary Successive Approximation Register Analog-to-Digital Converter for Wearable Healthcare Monitoring Applications" Micromachines 15, no. 1: 143. [9] C.-K. Liu, W.-Y. Chiang, P.-Z. Rao, P.-H. Hung, S.-L. Chen, C.-A. Chen, L.-H. Wang, P. A. R. Abu, S.-L. Chen,” The uses of a dual-band corrugated circularly polarized horn antenna for 5G systems,” Micromachines, vol. 13, 2022, pp. 1-18. [10] S. Surti, M. E. Werner, A. E. Perkins, J. Kolthammer, J. S. Karp,” Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities,” The Journal of Nuclear Medicine, vol. 48, 2007, pp. 471–480. [11] R. F. Muzic, J. A. Kolthammer,” PET performance of the Gemini TF: A time-of-flight PET/CT scanner” In Proc. IEEE Nucl. Sci. Symp. Conf. Rec. , vol. 3, 2006, pp. 1940–1944. [12] N. Ollivier-Henry, W. Gao, N. A. Mbow, D. Brasse, B. Humbert, C. HuGuo, C. Colledani, Y. Hu,” Design and Characteristics of a Full-Custom Multichannel Front-End Readout ASIC Using Current-Mode CSA for Small Animal PET Imaging,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, 2011, pp. 90-99. [13] W. Gao, D. Gao, T. Wei, H. Zeng, Y. Duan, S. Lu, L. Shen, W. Xu, Q. Xie, Y. Hu," Design of a Monolithic Multi-Channel Front-End Readout ASIC for LYSO/SiPM-based Small Animal Flat-Panel PET Imaging,” IEEE Nuclear Science Symposium Conference Record 2011, pp. 2447-2450. [14] N. Schemm, S. Balkır, M. W. Hoffman,” A 4-μW CMOS Front End for Particle Detection Applications,” IEEE Trans. on Circuits And Systems—II: Express Briefs, vol. 57, 2010, pp. 100-104. [15] W. Gao, D. Gao, C. Hu-Guo, T. Wei, Y. Hu,” Design and Characteristics of an Integrated Multichannel Ramp ADC Using Digital DLL Techniques for Small Animal PET Imaging,” IEEE Transactions on Nuclear Science, vol. 58, 2011, pp. 2161-2168. [16] L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, R. Walker,” A Fully Digital 8×16 SiPM Array for PET Applications With Per-Pixel TDCs and Real-Time Energy Output,” IEEE J. Solid-State Circuits, vol. 49, 2014, pp. 301-314. [17] Pieter Harpe, et. al, “A 0.20 mm2 3 nW Signal Acquisition IC for Miniature Sensor Nodes in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 1, Jan 2016, pp. 240-248. [18] S.-Y. Kim, et. al, “Design of a High Efficiency DC–DC Buck Converter With Two-Step Digital PWM and Low Power Self-Tracking Zero Current Detector for IoT Applications,” IEEE Trans. Power Electron., vol. 33, no. 2, Feb. 2018, pp. 1428–1439. [19] J.-E. Park, Y.-H. Hwang, and D.-K. Jeong, “A 0.4-to-1 V Voltage Scalable ΔΣADC With Two-Step Hybrid Integrator for IoT Sensor Applications in 65-nm LP CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 12, Dec. 2017, pp. 1417–1421. [20] Junbo Shim, et. al, “An Ultra-Low-Power 16-Bit Second-Order Incremental ADC With SAR-Based Integrator for IoT Sensor Applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 12, Dec. 2018, pp. 1899–1903. [21] Haoming Xin, et. al,” A 174 pW–488.3 nW 1 S/s–100 kS/s All-Dynamic Resistive Temperature Sensor With Speed/Resolution/Resistance Adaptability,” IEEE Solid-State Circuits Let., vol. 1, no. 3, Mar 2018, pp. 70-73. [22] Ming Ding, et. al,” A Hybrid Design Automation Tool for SAR ADCs in IoT,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 12, Dec 2018, pp. 2853–2862. [23] Z. Zhang, et. al,” A Dynamic Tracking Algorithm Based SAR ADC in Bio-Related Applications,” IEEE Access, vol. 6, pp. 62166–62173, Nov. 2018. [24] W.-M. Chen, et. al,” A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, Jan 2014, pp. 232-247. [25] J. L. McCreary and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniues—Part I,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, Dec. 1975, pp. 371-379. [26] Brian P. Ginsburg, and Anantha P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, Apr. 2007, pp. 739-747. [27] C. C. Liu, et. al, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, Apr. 2010, pp. 731-740. [28] Y. Zhu, et. al, “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, Jun 2010, pp. 1111-1121. [29] Erkan Alpman, et. al,” A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 76-77a. [30] Nikolas P. Papadopoulos, et. al,” Toward Temperature Tracking With Unipolar Metal-Oxide Thin-Film SAR C-2C ADC on Plastic,” IEEE J. Solid-State Circuits, vol. 53, no. 8, Aug 2018, pp. 2263-2272. [31] Andrea Agnes, et. al, ” A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time- Domain Comparator,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 246-247. [32] J. Shen, A. Shikata, et. al, “A 16-bit 16MS/s SAR ADC with On-Chip Calibration in 55nm CMOS,” in Proc. Symp. VLSI Circuits (VLSIC), Kyoto, Japan, Jun. 2017, pp. C282-C283. [33] J. Y. Um, et. al, “A Digital-Domain Calibration of Split-Capacitor DAC for a Differential SAR ADC Without Additional Analog Circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, Nov 2013, pp. 2845-2856. [34] Yanfei Chen, et. al,” Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2009, pp. 279–282. [35] C. C. Liu, C. H. Kuo, and Y. Z. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 11, Nov 2015, pp. 2645-2654. [36] Pieter J. A. Harpe, et. al, Guido Dolmans, Harmke de Groot, “A 26μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios,” IEEE J. Solid-State Circuits, vol. 46, no. 7, Jul 2011, pp. 1585-1595. [37] R. Xu, et. al,” A 1/2.5 inch VGA 400 fps CMOS Image Sensor With High Sensitivity for Machine Vision,” IEEE J. Solid-State Circuits, vol. 49, no. 10, Oct 2014, pp. 2342-2351. [38] S. H. Wan, et. al, C. P. Huang, G. J. Ren, K. T. Chiou, C. H. Ho, “A 10-bit 50-MS/s SAR ADC with techniques for relaxing the requirement on driving capability of Reference voltage buffers,” in Proc. IEEE A-SSCC, 2013, pp.293-296. [39] X.Y. Tong, et. al,” D/A conversion networks for high-resolution SAR A/D converters,” Electron. Let., vol. 47, no. 3, 2011, pp. 169-171. [40] Michael Inerfield, et. al,” An 11.5-ENOB 100-MS/s 8mW dual-Reference SAR ADC in 28nm CMOS,” in Proc. Symp. VLSI Circuits (VLSIC), Jun. 2014, pp. 1-2. [41] H. Zhang, et. al,” A 0.6-V 10-bit 200-kS/s SAR ADC With Higher Side-Reset-and-Set Switching Scheme and Hybrid CAP-MOS DAC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, Nov 2018, pp. 3639-3650. [42] C. C. Liu, et. al, ” A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” in Proc. Symp. VLSI Circuits (VLSIC), Jun. 2010, pp. 241-242. [43] C. C. Liu, et. al,” A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386-387. [44] Franz Kuttner, “A 1.2V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2002, pp. 176-177. [45] W. Liu, P. Huang, and Y. Chiu, “A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 11, Nov 2011, pp. 2661-2672. [46] D. Li, Z. Zhu, R. Ding, and Y. Yang,” A 1.4-mW 10-Bit 150-MS/s SAR ADC With Nonbinary Split Capacitive DAC in 65-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 11, Nov 2018, pp. 1524-1528. [47] Vito Giannini, et. al,” An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 238-239. [48] H.-L. Kuo, C.-W. Lu, P. Chen,” An 18.39 fJ/Conversion-Step 1-MS/s 12-bit SAR ADC With Non-Binary Multiple-LSB-Redundant and Non-Integer-and-Split-Capacitor DAC,” IEEE Access, vol. 9, 2021, pp. 5651–5669. [49] H.L. Kuo, C.-W. Lu, S.-G. Lin, D.-C. Chang,” A 10-bit 10 MS/s SAR ADC with the reduced capacitance DAC,” In Proc. International Symposium on Next-Generation Electronics (ISNE), Hsinchu, Taiwan, 4–6, May, 2016, pp. 1–2. [50] B. Razavi,” Design of Analog CMOS Integrated Circuit,” Boston, McGraw-Hill, 2006, pp.209, pp. 378-381, 465. [51] S. A. Mahmoud, A. M. Soliman,” The Differential Difference Operational Floating Amplifier: A New Block for Analog Signal Processing in MOS Technology,” IEEE Trans. on Circuits And Systems—II: Analog and Digital Signal Processing, vol. 45, 1998, pp. 148-158. [52] Naveen Verma, and Anantha P. Chandrakasan, “ An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 42, no. 6, Jun 2007, pp. 1196-1205. [53] A.M. Abo, and P.R. Gray,” A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, May 1999, pp. 599-606. [54] Y.-J. Chen, K.-H. Chang, and C.-C. Hsieh,” A 2.02–5.16 fJ/Conversion Step 10 Bit Hybrid Coarse-Fine SAR ADC With Time-Domain Quantizer in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 2, Feb 2016, pp. 357-364. [55] Michiel van Elzakker, et. al,” A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 243-245. [56] P.M. Figueiredo, and J.C. Vital,” Kickback noise reduction techniques for CMOS latched comparators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, Jul 2006, pp. 541-545. [57] H.W. Kang, H. K. Hong, W. Kim, and S. T. Ryu , “A Time-Interleaved 12-b 270-MS/s SAR ADC With Virtual-Timing-Reference Timing-Skew Calibration Scheme,” IEEE J. Solid-State Circuits, vol. 53, no. 9, Sep 2018, pp. 2584-2594. [58] C. W. Hsu, et. al,” A 12-b 40-MS/s Calibration-Free SAR ADC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, Mar 2018, pp. 881-890. [59] Yi Shen, Z. Zhu, S. Liu, and Y. Yang,” A Reconfigurable 10-to-12-b 80-to-20-MS/s Bandwidth Scalable SAR ADC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 1, Jan 2018, pp. 51-60. [60] Y. Hirai, et. al, “A Biomedical Sensor System With Stochastic A/D Conversion and Error Correction by Machine Learning,” IEEE Access, vol. 7, Mar. 2019, pp. 21990–22001. [61] Naveen Verma, and Anantha P. Chandrakasan,“ An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 42, no. 6, Jun 2007, pp. 1196-1205. [62] Shanthi Pavan, Richard Schreier, Gabor C. Temes, “Understanding Delta-Sigma Data Converters,” 2017, Wiley-IEEE Press, pp. 140-162.
|