|
1. Q. Truong-Tran, J. Carter, R. E. Ruffin, P. D. Zalewski. The Role of Zinc in Caspase Activation and Apoptotic Cell Death. Biometals, 2001, 14, 315. 2. F. Y.-H. Wu, C. W. Wu. Zinc in DNA Replication and Transcription. Annu. Rev. Nutr., 1987, 7, 251. 3. W. Maret, C. Jacob, B. L. Vallee, E. H. Fischer. Inhibitory Sites in Enzymes: Zinc Removal and Reactivation by Thionein. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1936. 4. K. A. Jackson, R. A. Valentine, L. J. Coneyworth, J. C. Mathers, D. Ford. Mechanisms of Mammalian Zinc-Regulated Gene Expression. Biochem. Soc. Trans., 2008, 36, 1262. 5. P. Bonaventura, G. Benedetti, F. Albarède, P. Miossec. Zinc and Its Role in Immunity and Inflammation. Autoimmun. Rev., 2015, 14, 277. 6. T. G. Smart, X. Xie, B. J. Krishek. Modulation of Inhibitory and Excitatory Amino Acid Receptor Ion Channels by Zinc. Prog. Neurobiol., 1994, 42, 393. 7. R. A. Colvin, C. P. Fontaine, M. Laskowski, D. Thomas. Zn2+ Transporters and Zn2+ Homeostasis in Neurons. Eur. J. Pharmacol., 2003, 479, 171. 8. A. T. Miles, G. M. Hawksworth, J. H. Beattie, V. Rodilla. Induction, Regulation, Degradation, and Biological Significance of Mammalian Metallothioneins. Crit. Rev. Biochem. Mol. Biol., 2000, 35, 35. 9. M. Aschner, M. G. Cherian, C. D. Klaassen, R. D. Palmiter, J. C. Erickson, A. I. Bush. Metallothioneins in Brain—The Role in Physiology and Pathology. Toxicol. Appl. Pharmacol., 1997, 142, 229. 10. J. Frederickson. Neurobiology of Zinc and Zinc-Containing Neurons. Int. Rev. Neurobiol., 1989, 31, 145. 11. K. Vogt, J. Mellor, G. Tong, R. Nicoll. The Actions of Synaptically Released Zinc at Hippocampal Mossy Fiber Synapses. Neuron, 2000, 26, 187. 12. Y. Z. Huang, E. Pan, Z.-Q. Xiong, J. O. McNamara. Zinc-Mediated Transactivation of TrkB Potentiates the Hippocampal Mossy Fiber-CA3 Pyramid Synapse. Neuron, 2008, 57, 546. 13. A. S. Nakashima, R. H. Dyck. Zinc and Cortical Plasticity. Brain Res. Rev., 2009, 59, 347. 14. S. Y. Assaf, S.-H. Chung. Release of Endogenous Zn2+ from Brain Tissue During Activity. Nature, 1984, 308, 734. 15. Y. Li, C. J. Hough, S. W. Suh, J. M. Sarvey, C. J. Frederickson. Rapid Translocation of Zn2+ from Presynaptic Terminals Into Postsynaptic Hippocampal Neurons After Physiological Stimulation. J. Neurophysiol., 2001, 86, 2597. 16. J. Qian, J. L. Noebels. Visualization of Transmitter Release with Zinc Fluorescence Detection at the Mouse Hippocampal Mossy Fibre Synapse. J. Physiol., 2005, 566, 747. 17. R. B. Thompson, W. O. Whetsell Jr, B. P. Maliwal, C. A. Fierke, C. J. Frederickson. Fluorescence Microscopy of Stimulated Zn(II) Release from Organotypic Cultures of Mammalian Hippocampus Using a Carbonic Anhydrase-Based Biosensor System. J. Neurosci. Methods, 2000, 96, 35. 18. C. J. Frederickson, L. J. Giblin, A. Krężel, D. J. McAdoo, R. N. Muelle, Y. Zeng, R. V. Balaji, R. Masalha, R. B. Thompson, C. A. Fierke, J. M. Sarvey, M. de Valdenebro, D. S. Prough, M. H. Zornow. Concentrations of Extracellular Free Zinc (pZn)e in the Central Nervous System During Simple Anesthetization, Ischemia and Reperfusion. Exp. Neurol., 2006, 198, 285. 19. A. R. Kay. Evidence for Chelatable Zinc in the Extracellular Space of the Hippocampus, But Little Evidence for Synaptic Release of Zn. J. Neurosci., 2003, 23, 6847. 20. S. L. Sensi, P. Paoletti, A. I. Bush, I. Sekler. Zinc in the Physiology and Pathology of the CNS. Nat. Rev. Neurosci., 2009, 10, 780. 21. K. He, E. Aizenman. ERK Signaling Leads to Mitochondrial Dysfunction in Extracellular Zinc-Induced Neurotoxicity. J. Neurochem., 2010, 114, 452. 22. A. I. Bush, W. H. Pettingell, G. Multhaup, M. d Paradis, J. P. Vonsattel, J. F. Gusella, K. Beyreuther, C. L. Masters, R. E. Tanzi. Rapid Induction of Alzheimer A Beta Amyloid Formation by Zinc. Science, 1994, 265, 1464. 23. C. J. Frederickson, M. A. Klitenick, W. I. Manton, J. B. Kirkpatrick. Cytoarchitectonic Distribution of Zinc in the Hippocampus of Man and the Rat. Brain Res., 1983, 273, 335. 24. M. Yokoyama, J. Koh, D. W. Choi. Brief Exposure to Zinc is Toxic to Cortical Neurons. Neurosci. Lett., 1986, 71, 351. 25. T. Dexter, F. R. Wells, A. J. Lee, F. Agid, Y. Agid, P. Jenner, C. D. Marsden. Increased Nigral Iron Content and Alterations in Other Metal Ions Occurring in Brain in Parkinson's Disease. J. Neurochem., 1989, 52, 1830. 26. A. P. Smith, N. M. Lee. Role of Zinc in ALS. Amyotroph. Lateral. Scler., 2007, 8, 131. 27. Deshpande, H. Kawai, R. Metherate, C. G. Glabe, J. Busciglio. A Role for Synaptic Zinc in Activity-Dependent Aβ Oligomer Formation and Accumulation at Excitatory Synapses. J. Neurosci., 2009, 29, 4004. 28. Takeda, H. Tamano. Regulation of Extracellular Zn2+ Homeostasis in the Hippocampus as a Therapeutic Target for Alzheimer’s Disease. Expert Opin. Ther. Targets, 2015, 19, 1051. 29. S. W. Suh, G. Danscher, M. S. Jensen, R. Thompson, M. Motamedi, C. J. Frederickson. Release of Synaptic Zinc is Substantially Depressed by Conventional Brain Slice Preparations. Brain Res., 2000, 879, 7. 30. R. Alford, H. M. Simpson, J. Duberman, G. C. Hill, M. Ogawa, C. Regino, H. Kobayashi, P. L. Choyke. Toxicity of Organic Fluorophores Used in Molecular Imaging: Literature Review. Mol. Imaging, 2009, 8, 341. 31. K. R. Gee, Z.-L. Zhou, W.-J. Qian, R. Kennedy. Detection and Imaging of Zinc Secretion from Pancreatic Β-Cells Using a New Fluorescent Zinc Indicator. J. Am. Chem. Soc., 2002, 124, 776. 32. Marszałek, A. Krężel, W. Goch, I. Zhukov, I. Paczkowska, W. Bal. Revised Stability Constant, Spectroscopic Properties and Binding Mode of Zn(II) to FluoZin-3, The Most Common Zinc Probe in Life Sciences. J. Inorg. Biochem., 2016, 161, 107. 33. U. Schenk, C. Verderio, F. Benfenati, M. Matteoli. Regulated Delivery of AMPA Receptor Subunits to the Presynaptic Membrane. EMBO J., 2003, 22, 558. 34. B. Hansen, H. Yuan, S. F. Traynelis. Structural Aspects of AMPA Receptor Activation, Desensitization and Deactivation. Curr. Opin. Neurobiol., 2007, 17, 281. 35. Link, L. Edelmann, J. H. Chou, T. Binz, S. Yamasaki, U. Eisel, M. Baumert, T. C. Südhof, H. Niemann, R. Jahn. Tetanus Toxin Action: Inhibition of Neurotransmitter Release Linked to Synaptobrevin Proteolysis. Biochem. Biophys. Res. Commun., 1992, 189, 1017. 36. D. E. Jane, K. Hoo, R. Kamboj, M. Deverill, D. Bleakman, A. Mandelzys. Synthesis of Willardiine and 6-Azawillardiine Analogs: Pharmacological Characterization on Cloned Homomeric Human AMPA and Kainate Receptor Subtypes. J. Med. Chem., 1997, 40, 3645. 37. A. Anand, C.-R. Liu, A.-C. Chou, W.-H. Hsu, R. K. Ulaganathan, Y.-C. Lin, C.-A. Dai, F.-G. Tseng, C.-Y. Pan, Y.-T. Chen. Detection of K+ Efflux from Stimulated Cortical Neurons by an Aptamer-Modified Silicon Nanowire Field-Effect Transistor. ACS Sens., 2017, 2, 69. 38. T. Honore, S. N. Davies, J. Drejer, E. J. Fletcher, P. Jacobsen, D. Lodge, F. E. Nielsen. Quinoxalinediones: Potent Competitive Non-NMDA Glutamate Receptor Antagonists. Science, 1988, 241, 701. 39. M. J. Sheardown, E. O. Nielsen, A. J. Hansen, P. Jacobsen, T. Honore. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: A Neuroprotectant for Cerebral Ischemia. Science, 1990, 247, 571. 40. R. R. Chen, S.-H. Chung. Mechanism of Tetrodotoxin Block and Resistance in Sodium Channels. Biochem. Biophys. Res. Commun., 2014, 446, 370. 41. M. Ikeda, M. Ikeda. Bmal1 is an Essential Regulator for Circadian Cytosolic Ca2+ Rhythms in Suprachiasmatic Nucleus Neurons. J. Neurosci., 2014, 34, 12029. 42. S. D. Gower-Winter, C. W. Levenson. Zinc in the Central Nervous System: From Molecules to Behavior. Biofactors, 2012, 38, 186. 43. Guo, L. Yu, Y. Sun, X. Dong. Kinetic Insights into Zn2+-Induced Amyloid β-Protein Aggregation Revealed by Stopped-Flow Fluorescence Spectroscopy. J. Phys. Chem. B, 2017, 121, 3909. 44. Y. Miller, B. Ma, R. Nussinov. Zinc Ions Promote Alzheimer Aβ Aggregation via Population Shift of Polymorphic States. Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9490. 45. L. Ye, J. Rasmussen, S. A. Kaeser, A.‐M. Marzesco, U. Obermüller, J. Mahler, J. Schelle, J. Odenthal, C. Krüger, S. K. Fritschi, L. C. Walker, M. Staufenbiel, F. Baumann, M. Jucker. Aβ Seeding Potency Peaks in the Early Stages of Cerebral β‐Amyloidosis. EMBO Rep., 2017, 18, 1536. 46. I. Solomonov, E. Korkotian, B. Born, Y. Feldman, A. Bitler, F. Rahimi, H. Li, G. Bitan, I. Sagi. Zn2+-Aβ40 Complexes Form Metastable Quasi-Spherical Oligomers that are Cytotoxic to Cultured Hippocampal Neurons. J. Biol. Chem., 2012, 287, 20555. 47. A. Takeda, H. Tamano, M. Tempaku, M. Sasaki, C. Uematsu, S. Sato, H. Kanazawa, Z. L. Datki, P. A. Adlard, A. I. Bush. Regulation of Extracellular Zn2+ Homeostasis in the Hippocampus as a Therapeutic Target for Alzheimer’s Disease. J. Neurosci., 2017, 37, 7253.
|