帳號:guest(18.220.102.6)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):卡利玫
作者(外文):Khaleel, Mai Ibrahim
論文名稱(中文):顯微成像橢偏儀檢測變異型鏈球菌
論文名稱(外文):Sensing of Streptococcus Mutans by Microscopic Imaging Ellipsometry
指導教授(中文):張亞中
曾繁根
指導教授(外文):Chang, Yia-Chung
Tseng, Fan-Gang
口試委員(中文):陳彥龍
魏培坤
周家復
口試委員(外文):Chen, Yeng-Long
Wei, Pei-Kuen
Chou, Chia-Fu
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011813
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:81
中文關鍵詞:成像橢偏儀生物傳感細菌細胞焦平面
外文關鍵詞:imaging ellipsometrybiosensingbacterial cellsfocal plane
相關次數:
  • 推薦推薦:0
  • 點閱點閱:61
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
摘要
顯微成像橢偏儀(MIE)是一種光學技術,透過顯微鏡成像之下測量橢偏參數Psi(Ψ)和Delta(Δ)。這種技術公認的優勢在於非接觸、非破壞性和非侵入性。因此,它可以保持原本的條件之下檢測生物樣本的特性。.
在這項工作的第一部分,我使用MIE來測量乾燥的變形鏈球菌(變形鏈球菌)細胞在玻璃底物上的光學響應。使用具有單反射、雙反射和多重反射等三種不同理論模型分析500nm,600nm和700nm處的Ψ和Δ圖像,以獲得光學常數和高度分佈。經過檢測獲得變形鏈球菌的光學常數圖像之後,將單反射分析、雙反射或多重反射分析進行比較,顯示出不同的觀點。此外,通過原子力顯微鏡(AFM)測量的厚度值與變形鏈球菌樣品的雙反射和多重反射分析所估計的高度分佈一致,這意味著雙反射和多重反射分析可提供的信息與通過單反射分析所獲得的信息互補。.
在第二部分,我使用MIE研究在Au膜上培養的變形鏈球菌細胞的表面拓撲變化,通過測量可見光範圍(λ= 490nm-710nm)中的波長(λ)的橢偏光譜。對於一系列不同的物鏡平面(焦平面附近)收集二和四個細胞鏈的橢圓偏振係數圖像Ψ,Δ,p和s偏振反射率(Ip和Is)和反射率差分圖像(RDI) ),λ= 600nm。獲得的結果證明,我們能夠識別小於1μm的細胞並觀察其在Ψ和Δ圖像中的繞射圖像。我們發現Δ光譜和圖像對物鏡平面(POP)的位置特別敏感,而變異型鏈球菌細胞的Ψ光譜和圖像則對POP不敏感。
Microscopic Imaging Ellipsometry (MIE) is an optical technique that uses an objective and sensing procedure to measure the ellipsometric parameters Psi (Ψ) and Delta (Δ) in the form of microscopic maps. This technique is well known for being non-contact, non-destructive, and non-invasive. Therefore it can be used to detect and characterize biological species without any impact.
In the first part of this work, I used MIE to measure the optical response of dried Streptococcus mutans (S. mutans) cells on a glass substrate. The Ψ and Δ images at 500nm, 600nm, and 700nm were analyzed using three different theoretical models with single-bounce, two-bounce, and multi-bounce light paths to obtain the optical constants and height distribution. The obtained images of the optical constants show different aspects when comparing the single-bounce analysis with the two-bounce or multi-bounce analysis in detecting S. mutans samples. Furthermore, the height distributions estimated by two-bounce and multi-bounce analysis of S. mutans samples were in agreement with the thickness values measured by atomic force microscopy (AFM), which implies that the two-bounce and multi-bounce analysis can provide information complementary to that obtained by single-bounce light path.
In the second part, I used MIE to study surface topology variation for S. mutans cells cultured on Au film by measuring the ellipsometry spectra for wavelengths (λ) in the visible range (λ= 490nm - 710nm). The ellipsometry characteristic images Ψ, Δ, p- and s- polarized reflectance (Ip and Is), and reflectance difference image (RDI) for a chain of two and four cells were collected for a series of different objective planes (near the focal plane) for λ=600nm. The obtained results show that we were able to identify cells smaller than 1µm and observe their diffraction patterns in Ψ and Δ images. We found that the Δ spectra and images are particularly sensitive to the position of objective planes (POP), while the Ψ spectra and images for S. mutans cells are rather insensitive to POP.
摘要………...…………………………………………………………..ii
Abstract…………………………………………………………………iii
Acknowledgements…………………………………………………v
Chapter 1 Introduction ………………………………………………1
1.1 Streptococcus Mutans…………………………………1
1.2biofilm formation by S. mutans……………………………1
1.3 Ellipsometry…………………………………………………3
1.4 History of ellipsometry ………………………………………3
Chapter 2 Motivation ……………………………………………5
Chapter 3 Microscopic Imaging Ellipsometry………………………8
3.1MIE-RCE set up…………………………………………………8
3.2Calibration of MIE-RCE ………………………………………12
Chapter 4 Methods and Materials …………………………………………………13
4.1Cell culture ………………………………………………13
4.2Cell sample preparation ……………………………………13
4.3Theory and numerical calculations …………………………14
4.3.1Single-bounce light path …………………………16
4.3.1.1 s – polarization …………………16
4.3.1.2 p – polarization ……………………18
4.3.2Two-bounce light path ……………21
4.3.3Multi-bounce light path…………24
Chapter 5 Results and Discussion…………………………………27
5.1MIE-RCE calibration for glass substrate and fitting model..27
5.2MIE-RCE calibration for Si substrate and Au film………29
5.3AFM results ………………………………………………………31
5.4MIE-RCE results of S.mutans on glass substrate ..…………32
5.4.1Single-bounce analysis ……………………………36
5.4.2Two-bounce analysis …………………………39
5.4.3Multi-bounce analysis……………………………42
5.5 MIE-RCE results of S.mutans on Au film …………………47
5.5.1MIE images for different objective planes of two
S. mutans cells ……………………………………………………48
5.5.2MIE images for different objective planes of four
S. mutans cells …………………………………..............................52
5.5.3Significance of delta image for identifying
submicron feature ……………………………………………………56
5.5.4MIE spectra for different objective planes of two and four S. mutans cells …………………………………………………57
Chapter 6 Conclusion and Future Work ………………………………………60
6.1Conclusion …………………………………………………60
6.2Future work ………………………………………………62
References ………………………………………………………63
Appendix …………………………………………………74


1. Hakimiha, N., et al., "The susceptibility of Streptococcus mutans to antibacterial photodynamic therapy: a comparison of two different photosensitizers and light sources." Journal of Applied Oral Science. 22(2): p. 80-84. 2014.
2. Caglar, E., et al., "Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli." Clinical oral investigations. 11(4): p. 425-429. 2007.
3. Gil, F., et al., "The association of tooth lead content with dental health factors." Science of the total environment. 192(2): p. 183-191. 1996.
4. Edwardsson, S. and B. Mejare, "Streptococcus milleri (Guthof) and Streptococcus mutans in the mouths of infants before and after tooth eruption." Archives of oral biology. 23(9): p. 811-814. 1978.
5. Besic, F., "The fate of bacteria sealed in dental cavities." Journal of Dental Research. 22(5): p. 349-354. 1943.
6. Perch, B., E. Kjems, and T. Ravn, "Biochemical and serological properties of Streptococcus mutans from various human and animal sources." APMIS. 82(3): p. 357-370. 1974.
7. Loesche, W.J., "Role of Streptococcus-Mutans in Human Dental Decay." Microbiological Reviews. 50(4): p. 353-380. 1986.
8. Khaleel, M.I., et al., "Sensing of Streptococcus mutans by microscopic imaging ellipsometry." Journal of Biomedical Optics. 22(5). 2017.
9. Cabeen, M.T. and C. Jacobs-Wagner, "Bacterial cell shape." Nature reviews. Microbiology. 3(8): p. 601. 2005.
10. Sztajer, H., et al., "Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans." The ISME journal. 8(11): p. 2256-2271. 2014.
11. Duarte, S., et al., "Influences of starch and sucrose on Streptococcus mutans biofilms." Molecular Oral Microbiology. 23(3): p. 206-212. 2008.
12. Czaczyk, K. and K. Myszka, "Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation." Polish Journal of Environmental Studies. 16(6). 2007.
13. Klein, M.I., et al., "Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms." Frontiers in cellular and infection microbiology. 5. 2015.
14. Wei, Q. and L.Y.Z. Ma, "Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa." International Journal of Molecular Sciences. 14(10): p. 20983-21005. 2013.
15. Liu, B.H., et al., "In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms." Journal of Physics D-Applied Physics. 46(27). 2013.
16. Romero, D., et al., "Amyloid fibers provide structural integrity to Bacillus subtilis biofilms." Proceedings of the National Academy of Sciences. 107(5): p. 2230-2234. 2010.
17. Lemon, K., et al., "Biofilm development with an emphasis on Bacillus subtilis." Bacterial Biofilms. p. 1-16. 2008.
18. López, D., H. Vlamakis, and R. Kolter, "Biofilms." Cold Spring Harbor perspectives in biology. 2(7): p. a000398. 2010.
19. Dufour, D., V. Leung, and C.M. Lévesque, "Bacterial biofilm: structure, function, and antimicrobial resistance." Endodontic Topics. 22(1): p. 2-16. 2010.
20. Eliades, T. and K. Papadopoulou, "Microbiologically-influenced corrosion of orthodontic alloys: a review of proposed mechanisms and effects." Australian orthodontic journal. 25(1): p. 63. 2009.
21. Cruz, H., et al., "Tribocorrosion and bio-tribocorrosion in the oral environment: the case of dental implants." Biomedical tribology. p. 1-33. 2011.
22. Collins, F., "Biofilm formation, identification, and removal." Dental CE Digest. 1(8). 2006.
23. Marcinkiewicz, J., M. Strus, and E. Pasich, "Antibiotic resistance: a “dark side” of biofilmassociated chronic infections." Pol Arch Med Wewn. 123(6): p. 309-313. 2013.
24. Al-Hashedi, A.A., "Decontamination of Titanium Dental Implants Using Physical Methods." McGill University. 2015.
25. Sakaguchi, R.L. and J.M. Powers, "Craig's Restorative Dental Materials-E-Book." Elsevier Health Sciences. 2012.
26. Steinberg, D. and S. Eyal, "Initial biofilm formation of Streptococcus sobrinus on various orthodontics appliances." Journal of Oral Rehabilitation. 31(11): p. 1041-1045. 2004.
27. Tanizawa, Y., et al., "Salivary films on hydroxyapatite studied by an in vitro system for investigating the effect of metal ions and by a quartz-crystal microbalance system for monitoring layer-by-layer film formation." Journal of Cosmetic Science. 55(2): p. 163-176. 2004.
28. Van Houdt, R. and C.W. Michiels, "Role of bacterial cell surface structures in Escherichia coli biofilm formation." Research in Microbiology. 156(5-6): p. 626-633. 2005.
29. Marsh, P.D., A. Moter, and D.A. Devine, "Dental plaque biofilms: communities, conflict and control." Periodontology 2000. 55: p. 16-35. 2011.
30. Nagaoka, S., et al., "Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays." Fems Microbiology Letters. 281(2): p. 183-189. 2008.
31. "The Biofilm Matrix." Biofouling. 19(2): p. 139-150. 2003.
32. Branda, S.S., et al., "Biofilms: the matrix revisited." Trends in Microbiology. 13(1): p. 20-26. 2005.
33. Cavedon, K. and J. London, "Adhesin degradation: a possible function for a Prevotella loescheii protease?" Molecular Oral Microbiology. 8(5): p. 283-287. 1993.
34. Kaplan, J.B., M.F. Meyenhofer, and D.H. Fine, "Biofilm growth and detachment of Actinobacillus actinomycetemcomitans." Journal of Bacteriology. 185(4): p. 1399-1404. 2003.
35. Yoshizawa, T.r., "Handbook of optical metrology : principles and applications." Boca Raton: CRC Press. xiii, 730 p. 2009.
36. Michaelis, A., O. Genz, and U. Mantz, "Measurement system and method for measuring critical dimensions using ellipsometry." Google Patents. 2000.
37. de Groot, P., X.C. de Lega, and J. Liesener, "Model-based white light interference microscopy for metrology of transparent film stacks and optically-unresolved structures." Fringe 2009. p. 236-243. 2009.
38. Lodewijks, K., et al., "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements." Nano letters. 12(3): p. 1655-1659. 2012.
39. Zhou, X., et al., "Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields." Physical review letters. 102(7): p. 073902. 2009.
40. Huang, Y. and D.R. Paul, "Experimental methods for tracking physical aging of thin glassy polymer films by gas permeation." Journal of Membrane Science. 244(1): p. 167-178. 2004.
41. Fujiwara, H., "Principles of Spectroscopic Ellipsometry", in Spectroscopic Ellipsometry: Principles and Applications. John Wiley & Sons, Ltd. p. 81-146. 2007.
42. El-Agez, T.M., S.A. Taya, and A.A. El Tayyan, "An improvement of scanning ellipsometer by rotating a polarizer and an analyzer at a speed ratio of 1: 3." International Journal of Optomechatronics. 5(1): p. 51-67. 2011.
43. Mare, S., "INDUSTRIAL APPLICATIONS OF ELLIPSOMETRY." 2013.
44. Schubert, M., "Another century of ellipsometry." Annalen Der Physik. 15(7-8): p. 480-497. 2006.
45. Aspnes, D.E. and A.A. Studna, "High Precision Scanning Ellipsometer." Applied Optics. 14(1): p. 220-228. 1975.
46. Muller, R.H. and J.C. Farmer, "Fast, Self-Compensating Spectral-Scanning Ellipsometer." Review of Scientific Instruments. 55(3): p. 371-374. 1984.
47. Ducheyne, P., "Comprehensive biomaterials." Amsterdam ; Boston: Elsevier. 2011.
48. Asinovski, L., D. Beaglehole, and M. Clarkson, "Imaging ellipsometry: quantitative analysis." physica status solidi (a). 205(4): p. 764-771. 2008.
49. Arwin, H., "Spectroscopic ellipsometry and biology: recent developments and challenges." Thin Solid Films. 313: p. 764-774. 1998.
50. Dutta, M., et al., "Optical and microstructural characterization of multilayer Pb(Zr0.52Ti0.48)O-3 thin films correlating ellipsometry and nanoscopy." Journal of Materials Science. 51(17): p. 7944-7955. 2016.
51. Boyd, I.W., et al., "Proceedings of Symposium A on Photo-Excited Processes, Diagnostics and Applications of the 1999 E-MRS Spring Conference - Strasbourg, France, June 1-4, 1999 - Foreword." Applied Surface Science. 154: p. Vii-Viii. 2000.
52. Liu, Y., J. Hsieh, and S. Tung, "Extraction of optical constants of zinc oxide thin films by ellipsometry with various models." Thin Solid Films. 510(1): p. 32-38. 2006.
53. Woollam, J.A., W. McGaham, and B. Johs, "Spectroscopic ellipsometry studies of indium tin oxide and other flat panel display multilayer materials." Thin solid films. 241(1): p. 44-46. 1994.
54. Guenther, A.H. and J.K. McIver, "The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films." Thin Solid Films. 163: p. 203-214. 1988.
55. Qavi, A.J., et al., "Label-free technologies for quantitative multiparameter biological analysis." Analytical and Bioanalytical Chemistry. 394(1): p. 121-135. 2009.
56. Arwin, H., "Ellipsometry on thin organic layers of biological interest: characterization and applications." Thin Solid Films. 377: p. 48-56. 2000.
57. Fujiwara, H., "Spectroscopic ellipsometry: principles and applications." John Wiley & Sons. 2007.
58. Fujiwara, H., M. Kondo, and A. Matsuda, "Real-time spectroscopic ellipsometry studies of the nucleation and grain growth processes in microcrystalline silicon thin films." Physical Review B. 63(11): p. 115306. 2001.
59. Fujiwara, H., et al., "Interface-layer formation mechanism in a− S i: H thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy." Physical Review B. 60(19): p. 13598. 1999.
60. Nguyen, H.V., I. An, and R. Collins, "Evolution of the optical functions of thin-film aluminum: A real-time spectroscopic ellipsometry study." Physical Review B. 47(7): p. 3947. 1993.
61. Losurdo, M., et al., "Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives." Journal of Nanoparticle Research. 11(7): p. 1521-1554. 2009.
62. Rothen, A., "The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films." Review of Scientific Instruments. 16(2): p. 26-30. 1945.
63. Jones, A.C. and M.B. Raschke, "Thermal Infrared Near-Field Spectroscopy." Nano Letters. 12(3): p. 1475-1481. 2012.
64. Lewandowska, R., et al., "What can Raman spectroscopy and spectroscopic ellipsometry bring for the characterisation of thin films and materials surface?" Surface and Interface Analysis. 40(3-4): p. 588-592. 2008.
65. RCAS. RCAS. Veeco Innova. Facilities; [http://www.rcas.sinica.edu.tw/RCAS-en/facilities.php].
66. Beachey, C., "Bacterial Adherence." Springer Netherlands. 2013.
67. Informer Technologies. Intel (R) Array Visualizer; [http://intel-r-array-visualizer.software.informer.com/2012.2010/].
68. KG, P.I.P.G.C.P.-Z.P.Z.S.; [https://www.physikinstrumente.com/en/products/linear-stages-and-actuators/piezo-stages/p-2611z-piezo-z-stage-201731/.
69. Chen, Y.-D., et al. "Study of biological reaction in cancer cell with spectroscopic imaging ellipsometry." in Proceedings of SPIE Conference on Optics+Photonics, San Diego, California. 2016.
70. Khaleel, M.I., et al.,, "Microscopic imaging ellipsometry of submicron-scale bacterial cells." Trop J Pharm Res. p. (forthcoming). 2017.
71. Chang, Y., et al., "Optical sensing of nanoscale objects via computation-aided microscopic imaging ellipsometry." Sci. Lett. J. 5: p. 229. 2016.
72. Xie, H.-Y. and Y.-C. Chang, "Light scattering from coupled plasmonic nanospheres on a substrate." JOSA B. 30(8): p. 2215-2225. 2013.
73. Wang, Z.H. and G. Jin, "A label-free multisensing immunosensor based on imaging ellipsometry." Analytical Chemistry. 75(22): p. 6119-6123. 2003.
74. Striebel, C., A. Brecht, and G. Gauglitz, "Characterization of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application." Biosensors and Bioelectronics. 9(2): p. 139-146. 1994.
75. Schäferling, M. and S. Nagl, "Optical technologies for the read out and quality control of DNA and protein microarrays." Analytical and Bioanalytical Chemistry. 385(3): p. 500. 2006.
76. Lai, S.L., et al., "Optical imaging of surface-immobilized oligonucleotide probes on DNA microarrays using liquid crystals." Langmuir. 25(1): p. 311-316. 2008.
77. Chang, M.-J., et al., "High spatial resolution label-free detection of antigen–antibody binding on patterned surface by imaging ellipsometry." Journal of colloid and interface science. 360(2): p. 826-833. 2011.
78. Tengvall, P., I. Lundström, and B. Liedberg, "Protein adsorption studies on model organic surfaces: an ellipsometric and infrared spectroscopic approach." Biomaterials. 19(4): p. 407-422. 1998.
79. Kasemo, B., "Biological surface science." Current Opinion in Solid State and Materials Science. 3(5): p. 451-459. 1998.
80. Howland, M.C., et al., "Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths." Biophysical Journal. 92(4): p. 1306-1317. 2007.
81. Bae, Y.M., et al., "Detection of insulin-antibody binding on a solid surface using imaging ellipsometry." Biosensors & Bioelectronics. 20(4): p. 895-902. 2004.
82. An, I., "Application of imaging ellipsometry to the detection of latent fingermarks." Forensic Science International. 253: p. 28-32. 2015.
83. Nielsen, M.M.B. and A.C. Simonsen, "Imaging Ellipsometry of Spin-Coated Membranes: Mapping of Multilamellar Films, Hydrated Membranes, and Fluid Domains." Langmuir. 29(5): p. 1525-1532. 2013.
84. Optrel Ellipsometry. [http://www.optrel.de/products_multiskop_ellipsometry.html].
85. Fan, J.Y., H.X. Li, and F.Q. Wu, "A study on transmitted intensity of disturbance for air-spaced Glan-type polarizing prisms." Optics Communications. 223(1-3): p. 11-16. 2003.
86. WhiteLase SC Series: Blue & UV enhanced Supercontinuum Fiber Lasers. [ http://www.fianium.com/pdf/WhiteLase_SC400_UV_v1.pdf].
87. Mitutoyo. [https://www.edmundoptics.com.tw/microscopy/infinity-corrected-objectives/Mitutoyo-Infinity-Corrected-Long-Working-Distance-Objectives/].
88. pixelfly. [https://www.pco.de/sensitive-cameras/pixelfly-qe/].
89. Woollam, J.A.V.e.; [https://www.jawoollam.com/products/vase-ellipsometer].
90. Creative Life Scince. [http://www.cmp-micro.com].
91. Hu, Y.F., J.D. Zhang, and J. Ulstrup, "Interfacial Electrochemical Electron Transfer Processes in Bacterial Biofilm Environments on Au(111)." Langmuir. 26(11): p. 9094-9103. 2010.
92. BRAND-GMBH. [http://catalog.brand.de/index.php?encrypt=0&ID_O_TREE_GROUP=466&chapter=91&typ=Produkt&ID_O_PRODUCT=3882&begin=0&sLanguage=English&start_infoblock=1&.].
93. Velten, A., et al., "Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging." Nature Communications. 3. 2012.
94. Tsai, C.-Y., A. Veeraraghavan, and A.C. Sankaranarayanan. "Shape and reflectance from two-bounce light transients." in Computational Photography (ICCP), 2016 IEEE International Conference on. IEEE. 2016.
95. Taya, S.A., T.M. El-Agez, and A.A. Alkanoo, "Thin film characterization using rotating polarizer analyzer ellipsometer with a speed ratio 1: 3." Journal of Electromagnetic Analysis and Applications. 3(09): p. 351. 2011.
96. tip, O.; [http://probe.olympus-global.com/en/product/omcl_ac160ts_r3/].
97. Selwitz, R.H., A.I. Ismail, and N.B. Pitts, "Dental caries." The Lancet. 369(9555): p. 51-59. 2007.
98. Pitts, N., "Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice?" Caries research. 38(3): p. 294-304. 2004.
99. Health Promotion Administration, M.o.H.a.W., "2013 Health Promotion Administration Annual Report." 2013.
100. Pulp, D.D.C.; [http://www.welovelmc.com/dentistry/dental-caries.html].
101. Kidd, E. and O. Fejerskov, "What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms." Journal of dental research. 83(1_suppl): p. 35-38. 2004.
102. Meyer, D.H. and P.M. Fives-Taylor, "Oral pathogens: from dental plaque to cardiac disease." Current opinion in microbiology. 1(1): p. 88-95. 1998.
103. Aas, J.A., et al., "Defining the normal bacterial flora of the oral cavity." Journal of clinical microbiology. 43(11): p. 5721-5732. 2005.
104. Nishimura, J., et al., "Biofilm formation by Streptococcus mutans and related bacteria." Advances in Microbiology. 2(03): p. 208. 2012.
105. Binnig, G., C.F. Quate, and C. Gerber, "Atomic force microscope." Physical review letters. 56(9): p. 930. 1986.
106. Wikipedia. "Atomic force microscopy." [https://en.wikipedia.org/wiki/Atomic_force_microscopy].














 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *