帳號:guest(18.222.57.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):錢佳華
作者(外文):Chien, Chia-Hua
論文名稱(中文):碲化鉍銻奈米線及銀摻雜在硒化錫奈米晶體的合成及熱電性質分析
論文名稱(外文):The synthesis and thermoelectric properties of Bi-Sb-Te nanowire and Ag doped SnSe nanocrystals
指導教授(中文):李志浩
陳洋元
指導教授(外文):Lee, Chih-Hao
Chen, Yang-Yuan
口試委員(中文):陳信文
郭永綱
劉嘉吉
口試委員(外文):Chen, Sinn-Wen
Kuo, Yung-Kang
Liu, Chia-Jyi
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011810
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:87
中文關鍵詞:熱電材料碲化鉍銻硒化錫奈米線奈米晶體
外文關鍵詞:Thermoelectric materialBiSbTeSnSenanowirenanocrystal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:253
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
近來,熱電應用因其將廢熱轉化為電無有害排放的能力,引起了越來越多的興趣。與塊材相比,許多研究已經能夠實驗指出低維材料的物理性質不同。在奈米尺度上,藉由阻擋聲子傳遞能降低晶格熱導率(κph)來增強熱電效率,此外,透過摻雜濃度效應,調整費米能階的位置以達到最佳功率因數(σα2),是提高zT值的另一個策略。在本論文中,我們基於上述概念合成了高質量和大規模奈米材料,並分為兩個系統來研究熱電性能。
在第一部分中,藉由聚焦離子束,Bi0.8Sb1.2Te2.9奈米線的熱電性質被原位研究,其直徑從750修剪到490和285 nm。雖然電導率和熱導率都隨著直徑減小而顯著降低,但兩種物理性質清楚地表現出隨著直徑改變而有不同的行為,與Callaway模型的理論預測相比,觀察到更低的熱導率。結果顯示,熱導率的降低除了尺寸效應外,還有歸因於Ga離子照射產生的缺陷造成額外的聲子散射。在750nm處顯示出最大Seebeck係數和zT優值,然後隨著尺寸減小而線性減小。該研究不僅全面地了解了尺寸和缺陷對熱電性質的影響,而且提出了一種通過離子照射來調控奈米線熱導率的可能方法。
在第二部分中,使用兩步驟且無表面活性劑的溶液生長,來合成以克為單位的p型Ag摻雜SnSe奈米晶體。藉由高解析電子顯微鏡,研究SnSe奈米晶體的形成機制,且熱導率的量測下發現800 K附近有明顯相變。利用火花電漿法燒結製備的SnSe樣品,其熱電性質在3 %Ag摻雜的SnSe中有顯示出zTmax(在850 K下為0.8)。zTmax值比原始SnSe高約40%,其結果主要歸因於Ag摻雜對載子濃度和功率因數的增加。此研究結果表明,這種簡單的化學方法適合製造高品質的SnSe奈米晶體,並且也可以應用於其他異向性結晶材料。
Thermoelectric applications have attracted increasing interest recently due to its capability of converting waste heat into electricity without hazardous emissions. Compare with the bulk materials, many researches have been able to experimentally reveal that physical properties were different in low dimensional materials. In nanoscale, the enhancement of the thermoelectric efficiency by the reduction of lattice thermal conductivity (κph) due to phonon blocking. In addition, tuning the position of Femi level to achieve the optimum power factor (σα2) by doping concentration effect is another strategy to improve the zT value. In this thesis, we have synthesized the high quality and large-scale nanomaterials based on the mentioned concept and divided into two systems to investigate the thermoelectric properties.
In the first part, the thermoelectric properties of a Bi0.8Sb1.2Te2.9 nanowire (NW) were in-situ studied as it was trimmed from 750 down to 490 and 285 nm in diameter by a focused ion beam. While electrical and thermal conductivities both indubitably decrease with the diameter reduction, the two physical properties clearly exhibit different diameter dependent behaviors. The much lower thermal conductivities were observed as compared with the theoretical prediction of Callaway model. The consequence indicates that in addition to the size effect, extra phonon scattering of defects created by Ga ion irradiation was attributed to the reduction of thermal conductivities. The size dependence of Seebeck coefficient and figure of merit (zT) show the maximum at 750 nm, then decrease linearly with size decrease. The study not only provides the thoroughly understanding of the size and defect effects on the thermoelectric properties but also proposes a possible method to manipulate the thermal conductivity of NWs via ion irradiation.
In the second part, A two steps, surfactant-free solution growth process was utilized to synthesize p-type Ag doped SnSe nanocrystals in gram quantities. The formation mechanism of SnSe nanocrystals studied by the high resolution transmission electron microscopy. A clear phase transition near 800 K was discovered in the temperature dependence of thermal conductivity. The thermoelectric properties of SnSe pellets prepared by spark plasma sintering, exhibit a significant increase of zTmax (0.8 at 850 K) in the 3 % Ag doped SnSe. The zTmax value is about 40 % higher than that of the prinstine SnSe. The consequence is mainly attributed to the enhancement of carrier concentration and power factor by Ag doping. Our results demonstrate that this facile chemical method is amenable to fabricate high quality SnSe nanocrystals and might also be applied to other anisotropic crystalline materials.
Abstract i
中文摘要 iii
誌謝 v
Table of Contents vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
Chapter 2 Basic Concepts 4
2.1 Thermoelectric Effect 4
2.1.1 Seebeck Effect 4
2.1.2 Peltier Effect 7
2.1.3 Thomson Effect 8
2.2 Electrical Conductivity 9
2.3 Thermal conductivity 12
2.3.1 Lattice Thermal Conductivity 13
2.3.2 Electronic Thermal Conductivity 15
2.4 Thermoelectric efficiency 18
2.5 Thermoelectric properties in nanostructures 20
Chapter 3 Experimental Procedures 22
3.1 Experimental equiment 22
3.1.1 X-ray Diffraction 22
3.1.2 Spark Plasma Sintering 23
3.1.3 Plused laser deposition 25
3.1.4 Dual Beam Focused Ion Beam and Scanning Electron Microscope System 26
3.1.5 Transmission electron microscope 28
3.2 Thermoelectric Properties of Nanocomposites 29
3.2.1 Thermal Diffusivity 29
3.2.2 Seebeck Coefficient and Electrical Resistivity 31
3.2.3 Specific Heat (DSC-STA-449, NETZSCH) 32
3.2.4 Hall Effect Measurement (PPMS) 33
3.3 Thermoelectric Properties Measurement techniques of Nanowire 35
3.3.1 Four-probe method 35
3.3.2 Self-heating 3ω method for nanowire application 36
3.3.3 Seebeck coefficient measurement for nanowire application 40
3.4 Instrumentation and measurement platform 42
3.4.1 Instrumentation 42
3.4.2 Platform preparation 43
Chapter 4 Bi-Sb-Te Nanowire 46
4.1 In-situ Observation of Size and Irradiation Effects on Thermoelectric Properties of Bi-Sb-Te Nanowire in FIB Trimming 46
4.1.1 Sample preparation 47
4.1.2 Electrical and Seebeck coefficient characterization 49
4.1.3 Thermal conductivity and heat capacity characterization 51
4.2 Results 54
4.2.1 Structure and chemical composition 54
4.2.2 Electrical conductivity 56
4.2.3 Thermal conductivity 57
4.2.4 Seebeck coefficient and Figure of merit (ZT) 59
4.3 Discussion 62
Chapter 5 Ag doped SnSe Nanoccrystals 63
5.1 Facile chemical synthesis and enhanced thermoelectric properties of Ag doped SnSe nanocrystals 64
5.1.1 Sample preparation and thermoelectric properties characterization 64
5.2 Results 67
5.2.2 Thermoelectric properties 72
5.3 Discussion 79
Chapter 6 Conclusions 80
References 81
[1] L. E. Bell, Science, 2008, 321, 1457.
[2] G. J. Snyder and E. S. Toberer, Nat. Mater., 2008, 7, 105.
[3] Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen and G. J. Snyder, Nature, 2011, 473, 66.
[4] K. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414.
[5] B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. A. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen and Z. F. Ren, Science, 2008, 320, 634.
[6] L. D. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Nature, 2014, 508, 373.
[7] R. He, L. H. Huang, Y. M. Wang, G. Samsonidze, B. Kozinsky, Q. Y. Zhang and Z. F. Ren, APL Mater., 2016, 4, 13576.
[8] J. Zou and A. Balandin, J Appl Phys, 2001, 89, 2932.
[9] L. Shi, Q. Hao, and C. Yu., Appl Phys Lett, 2004, 84, 2638.
[10] Kulkarni, A. J. and Zhou, M., Appl Phys Lett, 2006, 88, 141921.
[11] D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang and J. Q. Li, Phys Rev B, 2002, 66, 165440.
[12] Z. D. Han and A. Fina, Prog Polym Sci, 2011, 36, 914.
[13] A. M. Marconnet, M. A. Panzer and K. E. Goodson, Rev Mod Phys, 2013, 85, 1295.
[14] D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl Phys Lett, 2003, 83, 2934.
[15] I. Ponomareva, D. Srivastava, and M. Menon, Nano Lett, 2007, 7, 1155.
[16] L. D. Hicks and M. S. Dresselhaus,, Phys Rev B, 1993, 47, 16631.
[17] H. Scherrer and S. Scherrer. Thermoelectric properties of bismuth antimony telluride solid solutions. In Thermoelectrics Handbook: Macro to Nano, 27-12-27-16- (CRC Press, 2005) .
[18] C. L. Chen, H. Wang, Y. Y. Chen, T. Day and G. J. Snyder, J. Mater. Chem. A, 2014, 2, 11171.
[19] E. K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao and Z. Ren, J. Mater. Chem. A, 2016, 4, 1848.
[20] K. L. Peng, X. Lu, H. Zhan, S. Hui, X. D. Tang, G. W. Wang, J. Y. Dai, C. Uher, G. Y. Wang and X. Y. Zhou, Energy Environ. Sci., 2016, 9, 454.
[21] L. D. Zhao, G. J. Tan, S. Q. Hao, J. Q. He, Y. L. Pei, H. Chi, H. Wang, S. K. Gong, H. B. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton and M. G. Kanatzidis, Science, 2016, 351, 141.
[22] Y. X. Chen, Z. H. Ge, M. Yin, D. Feng, X. Q. Huang, W. Zhao and J. He, Adv. Funct. Mater. 2016, 26, 6836.
[23] M. Gharsallah, F. Serrano-Sanchez, N. M. Nemes, F. J. Mompean, J. L. Martinez, M. T. Fernandez-Diaz, F. Elhalouani, and J. A. Alonso, Sci. Rep., 2016, 6, 26774.
[24] T. A. Wubieneh, C. L. Chen, P. C. Wei, S. Y. Chen and Y. Y. Chen, RSC Adv., 2016, 6, 114825.
[25] Y. J. Fu, J. T. Xu, G. Q. Liu, X. J. Tan, Z. Liu, X. Wang, H. Z Shao, H. C Jiang, B. Liang, and J. Jiang, Journal of Elec. Materi., 2017, 46, 3182.
[26] G. Han, S. R. Popuri, H. F. Greer, L. F. Llin, J. W. G. Bos, W. Zhou, D. J. Paul, H. Ménard, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, W. G. Li, M. C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, T. K. Mallick, and D. H. Gregory. Adv. Energy Mater. 2017, 1602328.
[27] H. Guo, H. Xin, X. Qin, J. Zhang, D. Li, Y. Li, C. Song, C. Li, J. Alloys Compd., 2016, 689, 87.
[28] G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du and L. D. Zhao, J. Am. Chem. Soc., 2016, 138, 13647.
[29] Q. Zhang, E. K. Chere, J. Y. Sun, F. Cao, K. Dahal, S. Chen, G. Chen and Z. F. Ren, Adv. Energy Mater., 2015, 5, 1500360.
[30] M. Cutler and N. F. Mott, Physical Review, 1969, 181, 1336.
[31] J. S. Blakemore, Solid State Physics, 1985, 2nd ed., Cambridge University Press.
[32] C. Kittel, Introduction to Solid State Physics, 2005, 8th ed. Wiley.
[33] G. J. Snyder and E. S. Toberer, Nature Materials, 2008, 7 (2), 105.
[34] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature, 2001, 413 597.
[35] L. Li , C. Jin, S. Xu, J. Yang, H. Du and G. Li., 2014, Nanotechnology 25, 415704.
[36] H. Scherrer & S. Scherrer. Thermoelectric properties of bismuth antimony telluride solid solutions. In Thermoelectrics Handbook: Macro to Nano, 27-12-27-16- (CRC Press, 2005) .
[37] D. G. Cahill and R. O. Pohl, Physical Review B, 1987, 35, 4067; N. O. Birge and S. R. Nagel, Review of Scientific Instruments, 1987, 58, 1464; D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, and R. O. Pohl, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1989, 7, 1259; D. G. Cahill, Review of Scientific Instruments, 1990, 61, 802; R. Frank, V. Drach, and J. Fricke, Review of Scientific Instruments, 1993, 64, 760.
[38] L. Lu, W. Yi, and D. L. Zhang, Review of Scientific Instruments, 2001, 72, 2996
[39] J. Ham, W. Shim, D. H. Kim, S. Lee, J. Roh, S. W. Sohn, K. H. Oh, P. W. Voorhees and W. Lee, Nano Lett, 2009, 9, 2867.
[40] P. C. Lee, H. C. Chen, C. M. Tseng, W. C. Lai, C. H. Lee, C. S. Chang, and Y. Y. Chen, , Chinese J Phys, 2013, 51, 854.
[41] Dedi et al., Appl Phys Lett, 2013, 103, 023115.
[42] T. Y. Choi, D. Poulikakos, J. Tharian and U. Sennhauser, Appl Phys Lett, 2005, 87, 013108.
[43] M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen, and S. J. Lai, Appl Phys Lett, 2008, 92, 063101.
[44] M. Pluska, A. Czerwinski, J. Ratajczak, J. Katcki and R. Rak, J Microsc-Oxford, 2006, 224, 89.
[46] S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, and Y. L. Wang, Appl Phys Lett, 2003, 82, 451.
[47] A. L. Pope, B. Zawilski and T. M. Tritt, Cryogenics, 2001, 41, 725.
[48] D. Weissenberger, M. Dürrschnabel, and D. Gerthsen, Appl Phys Lett, 2007, 91, 132110.
[49] M. Xia, Z. Cheng, J. Han, M. Zheng, C. H. Sow, J. T. L. Thong, S. Zhang and B. Li, Aip Adv, 2014, 4, 057128.
[50] S. Y. Glazkov, Int J Thermophys, 1985, 6, 421.
[51] S. Y. Lee, M. R. Lee, N. W. Park, G. S. Kim, H. J. Choi, T. Y. Choi and S. K. Lee, Nanotechnology, 2013, 24, 495202.
[52] S.Il Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science, 2015, 348, 109.
[53] F. Volklein, H. Reith, T. W. Cornelius, M. Rauber and R. Neumann, Nanotechnology, 2009, 20, 325706.
[54] J. Callaway, Phys Rev, 1959, 113, 1046.
[55] M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki, J Appl Phys, 2012, 112, 084315.
[56] G. D. Li, D. Liang, R. L. J. Qiu and X. P. A. Gao, Appl Phys Lett, 2013, 102, 043104.
[57] A. Boukai, K. Xu and J. R. Heath, Adv Mater, 2006, 18, 864.
[58] Z. H. Ge, K. Y. Wei, H. Lewis, J. Martin and G. S. Nolas, J. Solid State Chem., 2015, 225, 354.
[59] X. H. Ma, K. H. Cho and Y. M. Sung, CrystEngComm, 2014, 16, 5080.
[60] C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers and O. Delaire, Nat. Phys., 2015, 11, 1063.
[61] P. C. Wei, S. Bhattacharya, J. He, S. Neeleshwar, R. Podila, Y. Y. Chen and A. M. Rao, Nature, 2016, 539, E1.
[62] D. Bansal, J. W. Hong, C. W. Li, A. F. May, W. Porter, M. Y. Hu, D. L. Abernathy, and O. Delaire, Phys. Rev. B, 2016, 94, 054307.
[63] Q. Tan, L. D. Zhao, J. F. Li, C. F. Wu, T. R. Wei, Z. B. Xing and M. G. Kanatzidis, J. Mater. Chem. A, 2014, 2, 173
[64] J. Martin, L. Wang, L. Chen and G. S. Nolas, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 79, 115311.
[65] Y. Zheng, S. Wang, W. Liu, Z. Yin, H. Li, X. F. Tang and C. Uher, J. Phys. D: Appl. Phys., 2014, 47, 11501
[66] Y.W. Li, F. Li, J.F. Dong, Z.H. Ge, F.Y. Kang, J.Q. He, H.D. Du, B. Lia and J.F. Li, J. Mater. Chem. C, 2016, 4, 2047.
[67] S. Sassi, C. Candolfi, J. B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, and B. Lenoir, Appl. Phys. Lett., 2014, 104, 212105.
[68] D. R. Clarke, Surf. Coat. Technol., 2003, 163, 67.
[69] J. S. Steinhart and S. R. Hart, Deep Sea Research and Oceanographic Abstracts, 1968 15, 497.
[70] L. D. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Nature, 2014, 508, 373.
[71] J.P. Heremans, Acta Phys. Pol. A, 2005, 108, 4.
[72] A. Bid, A. Bora, and A. K. Raychaudhuri, Phys. Rev. B, 2006, 74, 035426
[73] X. Zhang, L. D. Zhao, 2015, 1, 92.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *