帳號:guest(3.145.56.6)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉耕余
作者(外文):Yeh, Keng-Yu
論文名稱(中文):鐵硒母系化合物之無序化鐵空缺位之超導性質之研究
論文名稱(外文):The Evolution of Superconductivity in beta-Fe(1-x)Se parent phase with Fe vacancy disorder
指導教授(中文):吳茂昆
張廖貴術
指導教授(外文):Wu, Maw-Kuen
Chang-Liao, Kuei-Shu
口試委員(中文):張嘉升
陳洋元
王明杰
口試委員(外文):Chang, Chia-Seng
Chen, Yang-Yuan
Wang, Ming-Jye
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011808
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:98
中文關鍵詞:鐵硒超導體費耳威相變鐵空缺有序性莫特絕緣體混合價態巨磁阻效應
外文關鍵詞:FeSe superconductorsVerwey transitionFe-vacancy orderMott-insulatorMix-valence stateColossal magnetoresistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要

本研究通過納米元件製程技術針對具有√5×√5鐵有序空缺位的Fe4 +δSe5單晶奈米線進行電性傳輸的研究。在未外加磁場下觀察到溫度28 K的一階金屬-絕緣體(MI)相轉變,並且發現與磁場相關的正巨磁阻(Colossal positive magnetoresistance)現象,其中該正巨磁阻表現出c軸優選方向(Prefer orientation)的異向性(anisotropic)的磁場依賴性。在磁場強度B = 9 T以及T <〜17 K時,Fe4 +δSe5單晶納米線保持與磁場無關的電阻狀態,推斷該磁場在零磁場下發生了自旋極化,可能與自旋-軌道耦合(spin-orbital coupling)的破壞有關。同時,該鐵有序空缺位的Fe4 +δSe5的金屬-絕緣體的相轉變效應具有頻率的依賴性,可以阿瑞尼斯定律(Arrhenius-law)的關係表示出其能量與頻率的關係,使這種行為與四氧化三鐵的Verwey轉變具有類似的電子電荷有序效應,也是第一個發現的非氧化物中具有類似Verwey轉變的實驗結果。數據表示自旋軌道耦合效應主要在低溫下對√5×√5 鐵空位有序的Fe4 +δSe5可以被觀測,此提供了解FeSe的電子軌道性質與超導電性的出現可能關聯。
另一方面,本論文亦進行了對FeSe超導體的絕緣母相(Parent phase)的詳細研究。通過化學共沉澱法合成Fe1-xSe時,以FeCl2的不同比例進行製備具有不同Fe空缺有序的Fe1-xSe。從電性的量測中發現,Fe空位有序的絕緣Fe1-xSe基本上表現出3D-Mott變程跳躍行為(3D-Mott variable range hopping),在37〜45 K左右具有類Verwey轉變特性(Verwey-like transition)。通過調控Fe空缺有序地排列,Fe1-xSe具備不同傳輸特性如單能帶(single-band)和雙能帶(two-band)行為。再者,本研究利用快速退火處理(Rapid thermal annealing, RTA)進行對鐵空缺有序性的破壞,同時增加Fe3 +在Fe1-xSe中的含量。在不改變Fe1-xSe分子組成劑量的條件下,產生出更多的電子載流子,導致在 8 K時會出現完全的超導現象。更在675 oC的RTA處理下達到起始超導相轉變溫度14.5 K,為第一次在常壓下出現FeSe系統高於超導相轉變溫度高於8 K的研究結果。最後,本研究論證通過激子耦合機制(Exciton coupling mechanism)可以誘導和增益FeSe的超導性,證明具有鐵控缺有序的Fe1-xSe為FeSe超導系統的母相。
Abstract

The electrical transport of Fe4+δSe5 single-crystal nanowires exhibiting √5 × √5 Fe-vacancy order and mixed valence of Fe were investigated in this study by a single nanowire measurement. A first-order metal-insulator (MI) transition of transition temperature TMI ≈ 28 K is observed under zero magnetic fields (B). Colossal positive magnetoresistance emerges, resulting from the magnetic-field dependent MI transition. TMI demonstrates anisotropic magnetic-field dependence with the preferred orientation along the c-axis. At T < ~17 K, the state of near magnetic-field independent resistance is preserved under magnetic fields up to B = 9 T, deduced to be spin-polarized at zero fields. The c-axis preference and the loss of magnetic-field dependence below T ≈ 17 K to the spin-orbital coupling in the tetragonal system have been claimed. The Arrhenius-law shift of the transition on the source-drain frequency dependence reveals that it is the first non-oxide compound with the Verwey-like electronic correlation. The data indicate that the spin-orbital coupling is crucial in √5 × √5 Fe-vacancy-ordered Fe4+δSe5 at low temperatures. The findings can provide valuable information to better understand the orbital nature and the emergence of superconductivity in FeSe-based materials.
On the other hand, a detailed study to investigate the existence of an insulating parent phase of FeSe superconductor has been carried out. Fe1-xSe with different Fe-vacancy orders were prepared by a chemical co-precipitation method under the nominal molar ratio of FeCl2 precursor during the synthesis. The insulating Fe1-xSe with Fe-vacancy order basically shows a 3D-Mott variable range hopping behavior with a Verwey-like electronic correlation at around 37~45 K, single- and two-band behaviors of the transport properties can be observed in different types of Fe1-x¬Se by controlling the vacancy order. The application of the rapid thermal annealing (RTA) process results in the destruction of Fe-vacancy order and induces more electron carriers by increasing the Fe3+ valence state. Superconductivity emerges with Tc ~ 8K without changing the chemical stoichiometry of the sample after the RTA process by resulting in the addition of extra carriers in favor of superconductivity and reach to 14.5 K with the appropriate thermal annealing temperature of 675 oC is firstly performed under the ambient condition. In addition, the results show that the tetragonal Fe(1-x)Se with the specific Fe-vacancy order is the parent phase of FeSe superconductors, and the superconductivity can be induced and correlated by the exciton coupling mechanism, which implies the parent phase of FeSe superconductors.
Content

中文摘要 i
Abstract ii
致謝 iii
Contents v
List of Figures vii
List of Tables xii

Chapter 1. The Overview of Fe-based Chalcogenide Superconductors
1-1 Overview of Fe-based chalcogenide superconductors 1
1-2 Pressure induced high Tc in Fe-based superconductors 1
1-3 Chemical substitution and carrier doping of FeSe-based superconductors 2
1-4 Fe vacancy order of FeSe 3

Chapter 2. Experiments
2-1 Preparation of -Fe4+ Se5 nanowire 6
2-2 Preparation of -Fe4+ Se5 nanowire and single nanowire-devices 7
2-3 Preparation and material analysis of -Fe(1-x)Se nanosheet 8
2-4 Experimental equipment 9

Chapter 3. The intrinsic anisotropic transport studies of single crystalline Fe-vacancy ordered Fe4+δSe5 nanowires
3-1 A single Fe4+δSe5 nanowire measurement-A way to understand the intrinsic property of insulating FeSe 14
3-2 Frequency-dependence Verwey-liked transition of single √5 × √5 Fe-vacancy-ordered -Fe4+δSe5 nanowire 15
3-3 Anisotropic magnetic transport properties of single √5 × √5 Fe-vacancy-ordered -Fe4+δSe5 19

Chapter 4. Evolution of superconductivity in Fe(1-x)Se
4-1 Motivation- the parent phase of Fe-based superconductors……………………28
4-2 Structural Analysis of chemical synthesis beta-Fe4Se5 30
4-2-1 Structural Analysis and refinement 30
4-2-2 Physical properties analysis 31
4-2-3 Verwey-liked transition in bulk beta-Fe4Se5 32
4-3 Evolution of superconductivity of induced by beta-Fe4Se5 carrier doping 40
4-3-1 Optimization procedure for preparing Fe-vacancy disordered -Fe4Se5…41
4-3-2 The Rapid thermal annealing process for inducing superconductivity 44
4-3-3 The material analysis of √2×√2 beta-Fe3Se4 60
4-3-4 Carrier induced superconductivity in beta-Fe(1-x)Se by RTA 65
4-4 Exciton-electron coupling induced superconductivity in beta-Fe(1-x)Se 77
4-4-1 An overview of interface superconductivity 77
4-4-2 Exciton-electron coupling of high temperature superconductivity 78
4-4-3. Exciton-electron coupling analysis in beta-Fe(1-x)Se 82

Chapter 5. Conclusions 88
References 89

1. Kamihara Y., Hiramatsu H., Hirano M., Kawamura R., Yanagi H., Kamiya T., Hosono H. Iron-Based Layered Superconductor LaOFeP. J. Am. Chem. Soc., 128 (2006), 10012.
2. Mizuguchi Y., Hara Y., Deguchi K., Tsuda S., Yamaguchi T. Anion Height Dependence of Tc for the Fe-Based Superconductor. Supercond. Sci. Technol., 23 (2010) 054013.
3. Kurmaev E. Z., Wilks R. G., Moewes A., Skorikov N. A., Izyumov Yu. A., Finkelstein L. d. et al. X-Ray Spectra and Electronic Structures of the Iron Arsenide Superconductors RFeAsO1−xFx (R=La,Sm). Phys. Rev. B., 78 (2008). 220503.
4. Kasinathan D., Ormeci A., Koch K., Burkhardt U., Schnelle W., AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-XTMxAs2 (TM = Mn, Co, Ni): Crystal Structure, Charge Doping, Magnetism and Superconductivity. New J. Phys., 11 (2009) 025023.
5. Wang X. C., Liu Q. Q., Lv Y. X., Gao W. B., Yang, L. X. The Superconductivity at 18 K in LiFeAs System. Solid State Commun., 148 (2008) 11.
6. Lai X. F., Zhang H., Wang Y. Q., Wang X, Zhang X., Lin J. H., and Huang F. I., Observation of Superconductivity in Tetragonal FeS. J. Am. Chem. Soc., 137 (2015) 10148.
7. Hsu F. C., Luo J. Y., Yeh L. W., Chen T. K., Huang T. W. et al., Superconductivity in the PbO-type structure a-FeSe, Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 14262.
8. Takahashi H., Igawa, K., Arii, K. et al., Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs. Nature 453 (2008) 376.
9. Takeshita N., Iyo A., Eisaki H., Kito H., Ito T.. Remarkable Suppression of Tc by Pressure in NdFeAsO1−y (y=0.4), J. Phys. Soc. Japan., 77 (2008) 075003.
10. Mizuguchi Y., Tomioka F., Tsuda S., Yamaguchi T., Takano Y., Superconductivity at 27K in tetragonal FeSe under high pressure, Appl. Phys. Lett. 93 (2008) 152505.
11. Margadonna S., Takabayashi Y., Ohishi Y., Mizuguchi Y., Takano Y., et al., Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc =37K). Phys. Rev. B, 80 (2009) 064506.
12. Medvedev, S., McQueen, T., Troyan, I. et al., Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure, Nature Mater, 8 (2009) 630.
13. Y. Han, W. Y. Li, L. X. Cao, X. Y. Wang, B. Xu, B. R. Zhao, Y. Q. Guo, and J. L. Yang. Superconductivity in Iron Telluride Thin Films under Tensile Stress. Phys. Rev. Lett. 104 (2010) 017003.
14. He, S., He, J., Zhang, W. et al., Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature Mater 12 (2013) 605.
15. Louca D., Yan J. Q., Llobet A., Arita R., Suppression of superconductivity in Fe chalcogenides by annealing: A reverse effect to pressure. Phys. Rev. B 84 (2011) 054522.
16. Wu M. K., Hsu F.C., Yeh K. W., Huang T. W., Luo J. Y. et al., The development of the superconducting PbO-type b-FeSe and related compounds. Physica C 469 (2009) 340.
17. Hanzawa K., Sato H., Hiramatsu H., Kamiya T., Hosono H., Electric field-induced superconducting transition of insulating FeSe thin film at 35 K, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 3986.
18. Chen T.K., Chang C.C., Chang H.H., Fang A.H., Wang C.H. et al., Fe-vacancy order and superconductivity in tetragonal β-Fe1-xSe. Proc. Natl. Acad. Sci. U.S.A. (2014) 111: 63.
19. Yan X. W., Gao M., Lu Z. Y., and Xiang T., Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor. Phys. Rev. B 83 (2011) 23320.
20. Shim W., Ham J. h., Lee K. I.,Young W., Jeung W. Y., Johnson M. et al., On-Film Formation of Bi Nanowires with Extraordinary Electron Mobility. Nano Lett. 1 (2009) 18.
21. Chang H. H. et al., Growth and characterization of superconducting β-FeSe type iron chalcogenide nanowires. Supercond. Sci. Technol. 27 (2014) 025015.
22. Avci, S., Chmaissem, O., Allred J. et al., Magnetically driven suppression of nematic order in an iron-based superconductor. Nat Commun 5 (2014) 3845.
23. Yu R., Zhu J. X., and Si Q., Orbital Selectivity Enhanced by Nematic Order in FeSe. Phys. Rev. Lett. 121 (2018) 227003.
24. Yi M., Lu D. H., Yu R., Riggs S. C., Chu J.-H. et al., Observation of Temperature-Induced Crossover to an Orbital-Selective Mott Phase in AxFe2−ySe2(A=K, Rb) Superconductors. Phys. Rev. Lett. 110 (2013) 067003.
25. Yu R. and Si Q., Orbital-Selective Mott Phase in Multiorbital Models for Alkaline Iron Selenides K1−xFe2−ySe2. Phys. Rev. Lett. 110 (2013) 146402.
26. Herbrych, J., Kaushal, N., Nocera, A. et al., Spin dynamics of the block orbital-selective Mott phase. Nat Commun 9 (2018) 3736.
27. Yi M., Zhang Y., Shen Z. X. et al., Role of the orbital degree of freedom in iron-based superconductors. npj Quant Mater 2 (2017) 57.
28. Saito T., Onari S., and Kontani H., Orbital fluctuation theory in iron pnictides: Effects of As-Fe-As bond angle, isotope substitution, and Z2-orbital pocket on superconductivity. Phys. Rev. B 82 (2010) 144510.
29. Kontani H. and Onari S., Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model. Phys. Rev. Lett. 104 (2010) 157001.
30. Bao W., Huang Q. Z., Chen G. F., Green M. A., Wang D. M., et al., A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor. Chin. Phys. Lett. 28 (2011) 086104.
31. Zhao J., Cao H., Bourret-Courchesne E., Lee D. H., and Birgeneau R. J.. Neutron-Diffraction Measurements of an Antiferromagnetic Semiconducting Phase in the Vicinity of the High-Temperature Superconducting State of KxFe2−ySe2. Phys. Rev. Lett. 109 (2012) 267003.
32. Wang C. H., Chen T. K., Chang C. C., Hsu C. H., Lee Y. C., et al., Disordered Fe vacancies and superconductivity in potassium-intercalated iron selenide (K2−xFe4+ySe5). Europhys. Lett. 111 (2015) 27004.
33. Wang C. H., Lee C. C., Huang G. T., Yang J. Y., Wang M. J. et al., Role of the extra Fe in K2−xFe4+ySe5 superconductors. Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 1104.
34. Varma C. M., Mixed-valence compounds. Rev. Mod. Phys. 48 (1976) 219.
35. Zhai H.Y., Ma J. X., Gillaspie D. T., Zhang X. G., Ward T. Z. et al.. Giant Discrete Steps in Metal-Insulator Transition in Perovskite Manganite Wires. Phys. Rev. Lett. 97 (2016) 167201.
36. Sharoni A., Ramírez J. G., and Schuller I. K.. Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions. Phys. Rev. Lett. 101 (2008) 026404.
37. Uhl´ır V., Arregi J. A., and Fullerton E. E.. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes. Nat. Commun. 7 (2016) 13113 EP.
38. Gooth J., B¨ohnert T., Gluschke J. G., Hamdou B., Barth S. et al.. Kinetics of the charge ordering in magnetite below the Verwey temperature. J. Phys.: Condens. Matter 26 (2014) 472202.
39. Park J. H., Tjeng L. H., Allen J. W., Metcalf P., and Chen C. T., Single-particle gap above the Verwey transition in Fe3O4. Phys. Rev. B 55 (1997) 12813.
40. Schrupp D., Sing M., Tsunekawa M., Fujiwara H., Kasai S., et al., High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition. Europhys. Lett. 70 (2005) 789.
41. Pimenov A., Tachos S., Rudolf T., Loidl A., Schrupp D. et al., Terahertz conductivity at the Verwey transition in magnetite. Phys. Rev. B 72 (2005) 035131.
42. Tomioka Y., Asamitsu A., Moritomo Y., Kuwahara H., and Tokura Y., Collapse of a Charge-Ordered State under a Magnetic Field in Pr1/2Sr1/2MnO3. Phys. Rev. Lett. 74 (1995) 5108.
43. Tomioka Y., Asamitsu A., Kuwahara, H. Moritomo Y., and Tokura Y., Magnetic-field-induced metal-insulator phenomena in Pr1−xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 53 (1996) R1689(R).
44. K. Noto and T. Tsuzuku. A simple two band theory of galvanomagnetic effects in graphite in relation to the magnetic field azimuth. Jpn. J. Appl. Phys 14 (1975) 46.
45. Zhang S., Wu Q., Liu Y., and Yazyev O. V., Magnetoresistance from Fermi surface topology. Phys. Rev. B 99 (2019) 35142.
46. Sun Y., Yamada T., Pyon S., and Tamegai T., Structural-transition-induced quasi-two-dimensional Fermi surface in FeSe. Phys. Rev. B 94 (2016) 134505.
47. Kokado S., Tsunoda M., Harigaya K., and Sakuma A.. Anisotropic Magnetoresistance Effects in Fe, Co, Ni, Fe4N, and Half-Metallic Ferromagnet: A Systematic Analysis. J. Phys. Soc. Jpn. 81 (2012) 024705.
48. Chena T. M., Graham A. C., Pepper M., Farrer I., and Ritchie D. A., Bias-controlled spin polarization in quantum wires. Appl. Phys. Lett. 93 (2008) 032102.
49. Kokado S., Tsunoda M., Harigaya K., and Sakuma A., Independence of topological surface state and bulk conductance in three-dimensional topological insulators. J. Phys. Soc. Jpn. 81 (2012) 24705.
50. Wolgast S., Kurdak C., Sun K., Allen J. W., Kim D.-J., and Fisk Z., Low-temperature surface conduction in the Kondo insulator SmB6. Phys. Rev. B 88 (2013) 180405.
51. Dankert A., Bhaskar P., Khokhriakov D., Rodrigues I. H., Karpiak B. et al., Origin and evolution of surface spin current in topological insulators. Phys. Rev. B 97 (2018) 125414.
52. Hao N. and Hu J., Topological quantum states of matter in iron-based superconductors: from concept to material realization. Natl. Sci. Rev. 6 (2018) 213.
53. Huang Q., Qiu Y., Bao W., Green M. A., Lynn J. W. et al.. Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors. Phys. Rev. Lett. 101 (2018) 257003.
54. Goldman A. I., Argyriou D. N., Ouladdiaf B., Chatterji T., Kreyssig A., et al., Lattice and magnetic instabilities in CaFe2As2: A single-crystal neutron diffraction study. Phys. Rev. B 78 (2008) 100506 R.
55. Margadonna S., Takabayashi Y., McDonald M. T., Kasperkiewicz K., Mizuguchi Y. et al., Crystal structure of the new FeSe1−x superconductor. Chem. Commun. (2008) 5607.
56. McQueen T. M., Williams A. J., Stephens P. W., Tao J., Zhu Y., Ksenofontov V. et al., Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 103 (2009) 057002.
57. Bendele M., Amato A., Conder K., Elender M., Keller H. et al., Pressure induced static magnetic order in superconducting FeSe1−x. Phys. Rev. Lett. 104 (2010) 087003.
58. Baek S. H., Efremov D. V., Ok J. M., Kim J. S., Brink J. V. D. , Bchner B., Orbital-driven nematicity in FeSe. Nat. Mater. 14 (2015) 210.
59. Bohmer A. E., Arai T., Hardy F., Hattori T., Iye T. et al., Origin of the Tetragonal-to-Orthorhombic Phase Transition in FeSe:A Combined Thermodynamic and NMR Study of Nematicity. Phys. Rev. Lett. 114 (2015) 027001.
60. Wang Q. S., Shen Y., Pan B. Y., Hao Y. O., Ma M. W., Zhou F. et al., Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Nat. Mater. 15 (2016) 159.
61. Bendele M., Ichsanow A., Pashkevich Y., Keller L., Str.ssle T. et al., Coexistence of superconductivity and magnetism in FeSe1−x under pressure. Phys. Rev. B. 85 (2012) 064517.
62. Garbarino G., Sow A., Lejay P., Sulpice A., Toulemonde P., Mezouar M., Nunez-Regueiro M., High-temperature superconductivity (Tc onset at 34 K) in the high-pressure orthorhombic phase of FeSe. Europhys. Lett. 86 (2009) 27001.
63. Masaki S., Kotegawa H., Hara Y., Tou H., Murata K., Mizuguchi Y., Takano Y., Precise pressure dependence of the superconducting transition temperature of FeSe: resistivity and 77Se-NMR study. J. Phys. Soc. Japan. 78 (2009) 063704.
64. Okabe H., Takeshita N., Horigane K., Muranaka T., Akimitsu J., Pressure-induced high-Tc superconducting phase in FeSe: correlation between anion height and Tc. Phys. Rev. B. 81 (2010) 205119.
65. Wang Q. Y., Li Z., Zhang W. H., Zhang Z. C., Zhang J. S., Li W., Ding H., Ou Y. B. et al., Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29 (2012) 037402.
66. Liu D. F., Zhang W. H., Mou D. X., He J. F., Ou Y. B. et al., Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 3 (2012) 931.
67. He S. L., He J. F. , Zhang W. H. , Zhao L., Liu D. F. et al., Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12 (2013) 605.
68. Tan S. Y., Zhang Y., Xia M., Ye Z. R., Chen F. et al., Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12 (2013) 634.
69. McQueen T. M., Huang Q., Ksenofontov V., Felser C., Xu Q., Zandbergen H. et al., Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 79(1) (2009) 014522.
70. Liu T. J., Hu J,. Qian B., Fobes D., Mao Z. Q., Bao W. et al., From (π,0) magnetic order to superconductivity with (π,π) magnetic resonance in Fe1.02Te1−xSex. Nat. Mater. 9 (2010) 718.
71. Chang C. C., Wang C. H., Wen M. H., Wu Y. R., Hsieh Y. T., Wu M. K., Superconductivity in PbO-type tetragonal FeSe nanoparticles. Solid State Commun 152(2012)649.
72. Zhou Y., Xu D. H., Zhang F. C., Chen W. Q., Theory for superconductivity in (Tl,K)FexSe2 as a doped Mott insulator, Europhys. Lett. 95 (2011) 17003.
73. Yu R., Zhu J. X., Si Q., Mott Transition in Modulated Lattices and Parent Insulator of (K; Tl) yFexSe2 Superconductors, Phys. Rev. Lett. 106 (2011) 186401.
74. Zhao J., Cao H., Bourret-Courchesne E., Lee D. H., Birgeneau R. J., Neutron-Diffraction Measurements of an Antiferromagnetic Semiconducting Phase in the Vicinity of the High-Temperature Superconducting State of KxFe2−ySe2. Phys. Rev. Lett. 109 (2012) 267003.
75. Walz F., The Verwey transition—a topical review. J. Phys.: Condens. Matter 14 (2002) R285.
76. Ziese M. and Blythe H. J., Magnetoresistance of magnetite. J. Phys.: Condens. Matter 12 (2000) 13.
77. Bohra M., Agarwal N. and Singh V., A Short Review on Verwey Transition in Nanostructured Fe3O4 Materials. J. Nanomater. (2019) 2019.
78. Kim T., Lim S., Hong J., Kwon S. G., Okamoto J. et al., Giant thermal hysteresis in Verwey transition of single domain Fe3O4 nanoparticles, Sci. Rep. 8 (2018) 5092.
79. Okamoto H.. The FeSe System. J. Phase Equilibria Diffus. 12 (1991) 383.
80. Mendoza D., Benítez J. L., Morales F., Escudero R.. Magnetic anomaly in superconducting FeSe, Solid State Commun., 150 (2010) 1124.
81. Ma F., Ji W., Hu J. P., Lu Z. Y., Xian T.. First-Principles Calculations of the Electronic Structure of Tetragonal -FeTe and -FeSe Crystals: Evidence for a Bicollinear Antiferromagnetic Order. Phys. Rev. Lett. 102 (2009) 177003.
82. Allender D., Bray J., Bardeen J., Model for an Exciton Mechanism of Superconductivity, Phys. Rev. B 7 (1974) 1020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *