帳號:guest(3.144.90.182)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭晉廷
作者(外文):Kuo, Chin-ting
論文名稱(中文):強化生成式摘要之資訊一致性與重點覆蓋率
論文名稱(外文):Boosting Factual Consistency and High Coverage in Unsupervised Abstractive Summarization
指導教授(中文):陳宜欣
指導教授(外文):CHEN, YI-SHIN
口試委員(中文):蔡宗翰
彭文志
口試委員(外文):Tsai, Tzong-Han
Peng, Wen-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:107065526
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:51
中文關鍵詞:生成式摘要關鍵字擷取強化學習非監督式學習內容覆蓋率資訊一致性
外文關鍵詞:Abstractive SummarizationKeyword ExtractionReinforcement LearningUnsupervised LearningCoverageFactual Consistency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:424
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生成式摘要(abstractive summarization)隨著快速成長的預訓練模型逐漸成為摘要任務的主流,而生成式摘要與原文資訊不一致的問題也變得更加明顯:摘要必須忠於原文,不應編造故事。本論文在非監督式摘要(unsupervised abstractive sumamrization)的研究基礎上,透過增加事實一致性評分機制,強化摘要與原文的資訊一致性;另外我們提出一個新的擷取關鍵字的方法,利用依存句法剖析器(Dependency Parsing)找到被修飾最多的關鍵字,這些關鍵字將用於輔助非監督式摘要所需還蓋到的訊息。透過 FEQA與ROUGE,實驗結果顯示我們在資訊一致性與重點還覆蓋率上皆有顯著的提升。
Abstractive summarization has gradually gained importance because of the rapid growth of pre-trained language models. However, there are occasions when the models generate a summary that contains information that is inconsistent with the original document. Presenting information differently from the original document is a critical problem under summarization that we label factual inconsistency. This research proposes an unsupervised abstractive summarization method for improving factual consistency and coverage that uses reinforcement learning. It includes a novel method designed to maintain factual consistency between the generated summary and the original document. As well as a novel method of ranking keywords; here, keywords are used to support the model and keep track of the level of coverage of the information. The result validates the performance and outperforms the existing methods.
Abstract
Acknowledgment
1 Introduction . . . . . . . . . . 1
2 Related Work . . . . . . . . . . 6
3 Framework . . . . . . . . . . . 9
3.1 Agent Group . . . . . . . . . . 11
3.1.1 Summarizer . . . . . . . . . . 11
3.1.2 Keyword Extraction . . . . . . . . 12
3.1.3 Masking Process . . . . . . . . . 12
3.2 Environment Group: Score Models . . . . 13
3.2.1 Factual Consistency . . . . . . . . 13
3.2.2 Coverage . . . . . . . . . . . 17
3.2.3 Fluency and Brevity . . . . . . . . 19
4 Reward and Training . . . . . . . . 21
4.1 Reinforcement Learning . . . . . . . 21
4.2 Training Order . . . . . . . . . 23
4.3 Scorer Weight Setting . . . . . . . 24
5 Experiment . . . . . . . . . . . 27
5.1 Dataset . . . . . . . . . . . . 27
5.2 Experimental Setup . . . . . . . . 28
5.3 Evaluation Metrics . . . . . . . . 29
6 Result and Analysis . . . . . . . . 33
6.1 RQ1: Coverage Evaluation . . . . . . 33
6.1.1 ROUGE Score . . . . . . . . . . 33
6.1.2 Keyword Selection . . . . . . . . 39
6.2 RQ2: Factual Consistency Evaluation . . 41
6.2.1 FEQA Score . . . . . . . . . . . 41
6.2.2 Human Evaluation . . . . . . . . . 43
7 Conclusion & Future Work . . . . . . 44
8 Appendix . . . . . . . . . . . 45
References . . . . . . . . . . . . . . 46




[1] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu Wang,Songhao Piao, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unilmv2: Pseudo-masked language models for unified language model pre-training, 2020.

[2] Federico Barrios, Federico Lpez, Luis Argerich, and Rosa Wachenchauzer. Variations of the similarity function of textrank for automated summarization, 2016.

[3] Yen-Chun Chen and Mohit Bansal. Fast abstractive summarization with reinforce-selected sentence rewriting, 2018.

[4] James Clarke and Mirella Lapata. Discourse constraints for document compression. Computational Linguistics, 36(3):411–441, 2010.

[5] Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long documents, 2018.

[6] T. A. Cohn and M. Lapata. Sentence compression as tree transduction.Journal of Artificial Intelligence Research, 34:637–674, Apr 2009.

[7] Dorottya Demszky, Kelvin Guu, and Percy Liang. Transforming question answering datasets into natural language inference datasets, 2018.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019.

[9] Yue Dong, Andrei Romascanu, and Jackie C. K. Cheung. Hiporank: Incorporatinghierarchical and positional information into graph-based unsupervised long document extractive summarization, 2020

[10] Esin Durmus, He He, and Mona Diab. FEQA: A question answering evaluation framework for faithfulness assessment in abstractive summarization. CoRR,abs/2005.03754, 2020.

[11] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 22:457–479, Dec 2004.

[12] Sebastian Gehrmann, Yuntian Deng, and Alexander M. Rush. Bottom-up abstractive summarization, 2018.

[13] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, WillKay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural information processing systems, 28:1693–1701, 2015.

[14] Arne Holst. Total data volume worldwide 2010-2025.

[15] Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding withBloom embeddings, convolutional neural networks, and incremental parsing. To ap-pear, 2017.

[16] Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui Min, Jing Tang, and Min Sun.A unified model for extractive and abstractive summarization using inconsistency loss, 2018

[17] Philippe Laban, Andrew Hsi, John Canny, and Marti A. Hearst. The summary loop: Learning to write abstractive summaries without examples. InProceedings of the 58thAnnual Meeting of the Association for Computational Linguistics, pages 5135–5150, Online, July 2020. Association for Computational Linguistics.

[18] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoisingsequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics.

[19] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. InTextSummarization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.

[20] Yang Liu and Mirella Lapata. Text summarization with pretrained encoders, 2019.

[21] Rada Mihalcea and Paul Tarau. TextRank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages404–411, Barcelona, Spain, July 2004. Association for Computational Linguistics.

[22] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network-based sequence model for extractive summarization of documents, 2016.

[23] Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos santos, Caglar Gulcehre, and Bing Xiang. Abstractive text summarization using sequence-to-sequence runs and beyond, 2016.

[24] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization, 2017.

[25] Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, RuofeiZhang, and Ming Zhou. ProphetNet: Predicting future n-gram for sequence-to-Sequence Pre-training. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2401–2410, Online, November 2020. Association for Computational Linguistics.

[26] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. 2018.

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI blog,1(8):9, 2019.

[28] Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and VaibhavaGoel. Self-critical sequence training for image captioning, 2017.

[29] Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization, 2015.

[30] Thomas Scialom, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano. Answers unite! unsupervised metrics for reinforced summarization models, 2019

[31] Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with pointer-generator networks, 2017.

[32] Khushboo S. Thakkar, R.V. Dharaskar, and M.B. Chandak. Graph-based algorithms for text summarization. In2010 3rd International Conference on Emerging Trends in Engineering and Technology, pages 516–519, 2010.

[33] Alex Wang, Kyunghyun Cho, and Mike Lewis. Asking and answering questions to evaluate the factual consistency of summaries, 2020.

[34] Dongling Xiao, Han Zhang, Yukun Li, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-gen: An enhanced multi-flow pre-training and fine-tuning framework for natural language generation, 2020.

[35] Christopher C Yang and Fu Lee Wang. Hierarchical summarization of large documents.Journal of the American Society for Information Science and Technology,59(6):887–902, 2008.

[36] Jingling Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with extracted gap sentences for abstractive summarization, 2020.

[37] Hao Zheng and Mirella Lapata. Sentence centrality revisited for unsupervised summarization, 2019.

[38] Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and XuanjingHuang. Extractive summarization as text matching, 2020

[39] Chenguang Zhu, William Hinthorn, Ruochen Xu, Qingkai Zeng, Michael Zeng, Xue-dong Huang, and Meng Jiang. Enhancing factual consistency of abstractive summarization, 2021.


(此全文20260901後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *